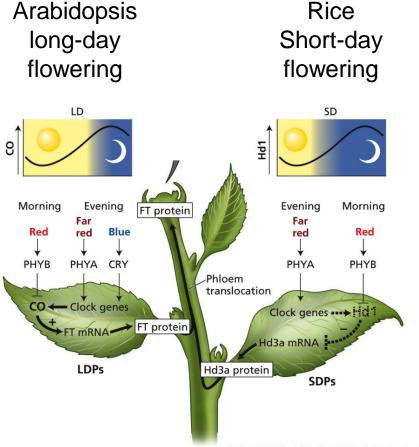
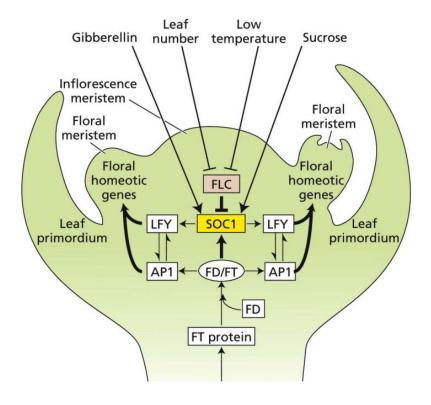

Plant and Trait Ontology Current Status

Pankaj Jaiswal Oregon State University


Plant Ontologies for Agronomic Traits EBI, UK December 8, 2011



Comparative and Translational Genomics

Photoperiod and the process of flowering

PLANT PHYSIOLOGY, Fourth Edition, Figure 25.33 (Part 1) @ 2006 Sinauer Associates, Inc.

GWAS and QTL studies

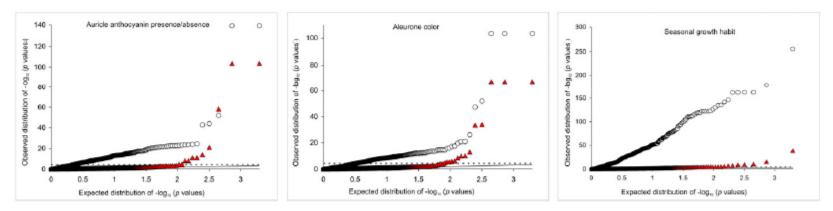
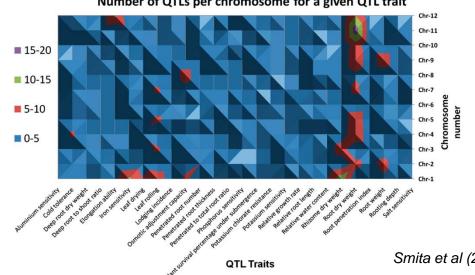
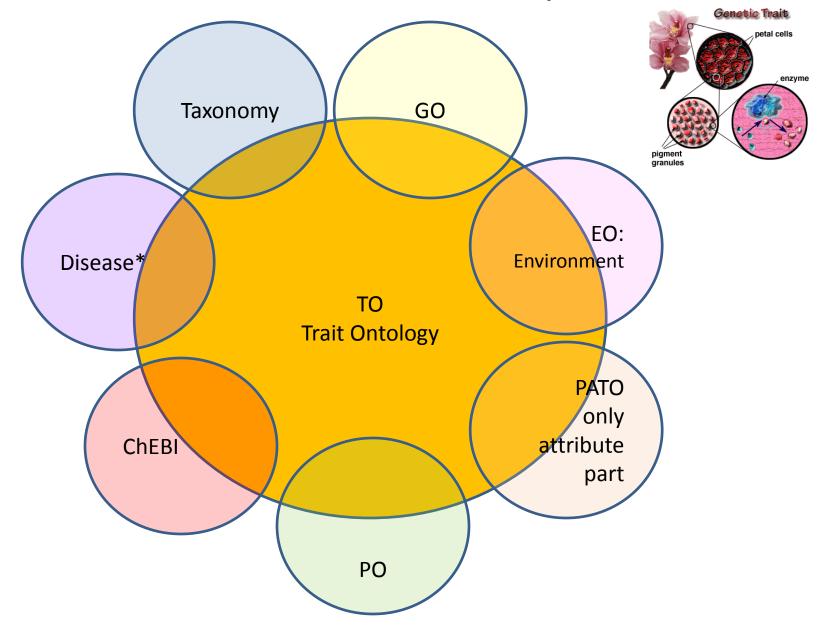



Fig. S4. Quantile-quantile plots for traits returning significant associations after GWA analysis. Expected vs. observed P values are plotted for naive (circles) and mixed model corrected (triangles) analyses. The x = y line (solid) and Bonferroni corrected P = 0.05 significance thresholds (dashed line) are indicated.

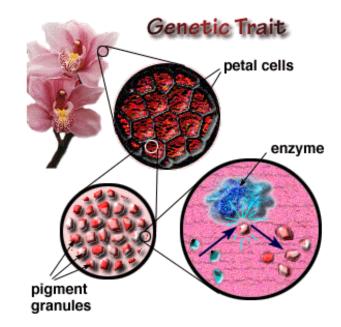
Cockram et al (2010) PNAS

Number of QTLs per chromosome for a given QTL trait


Trait vs Phenotype

• Entity+Attribute = Trait [**observable**]

E.g. Leaf(PO) + color (PATO-A) = Leaf color(TO)


- [Entity+Attribute+Value] = Phenotype [observed]
 e.g. Leaf(PO) + color (PATO-A) + yellow (PATO-V) = Leaf color
 yellow [EAV model:old]
- [Entity+(Attribute+Value)] = Phenotype [observed]
 e.g. Leaf(PO) + color yellow (PATO-AV) = Leaf color yellow
 [EA model:NEW]

Traits are the visible markers from multiple dimensions

Trait Ontology

- It's an ontology of Plant traits (characteristics/observable)
- Precomposed trait terms
- Includes aspects of:
 - Anatomy trait
 - Growth and development (phenology) trait
 - Biochemical trait
 - Stress (abiotic and biotic stress) trait
 - Agronomic quality trait
 - Yield trait
 - Metabolomic trait
- Does not include phenotype term

Pre Composition Approach-1

[Term] id: TO:0000372 name: amylose to amylopectin ratio namespace: plant_trait_ontology intersection_of: PATO:0000025 !composition intersection_of: towards CHEBI:28102 ! amylose intersection_of: relative_to CHEBI:28057 ! amylopectin

[Term] id: TO:0000188 name: drought sensitivity
namespace: plant_trait_ontology
intersection_of: PATO:000085 ! sensitivity
intersection_of: towards E0:0007404 ! drought environment

[Term] id: TO:0000227 name: root length intersection_of: PATO:0000122 ! Length intersection_of: inheres_in PO:0009005 ! root

Pre Composition Approach-1

Disease resistance phenotypes

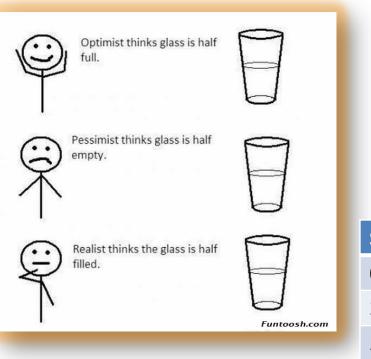
[Term] id: TO:0000323 name: stem rot disease resistance

- def: "Causal agent: Magnaporthe salvinii (Nakataea sigmoidea, Sclerotium oryzae), and Helminthosporium sigmoideum var. irregulare. Symptoms: dark lesions develop on the stems near the water line. Small, dark bodies (sclerotia) develop, weaken the stem and cause lodging."
- Easy to define if we had an orthogonal ontology of plant diseases and infectious agents. The definition pattern would be: A <TO:resistance> which *towards* <InfectiousAgent>

Assay-specific terms

Example: root dry weight

It is unclear how to proceed with these. No action was taken for these.


Conjunctive terms

Example: lemma and palea related traits

Example: lemma and palea pubescence

a pubescence which inheres_in the lemma and inheres_in the palea

Why TO Has No Observed Phenotype Values?

	A	В	С	D	E	F	G	Н	I	J	Κ	L	М	Ν	0	Р	
А	4	3	2	2	1	1	1	1	0	0	0	0	0	0	0	0	
В	3	4	2	2	1	1	1	1	0	0	0	0	0	0	0	0	
С	2	2	4	3	1	1	1	1	0	0	0	0	0	0	0	0	
D	2	2	3	4	1	1	1	1	0	0	0	0	0	0	0	0	
E	1	1	1	1	4	3	2	2	0	0	0	0	0	0	0	0	
F	1	1	1	1	3	4	2	2	0	0	0	0	0	0	0	0	
G	1	1	1	1	2	2	4	3	0	0	0	0	0	0	0	0	
$\mathbf{C} = \mathbf{H}$	1	1	1	1	2	2	3	4	0	0	0	0	0	0	0	0	•
Ι	0	0	0	0	0	0	0	0	4	3	2	2	1	1	1	1	
J	0	0	0	0	0	0	0	0	3	4	2	2	1	1	1	1	
K	0	0	0	0	0	0	0	0	2	2	4	3	1	1	1	1	
L	0	0	0	0	0	0	0	0	2	2	3	4	1	1	1	1	
М	0	0	0	0	0	0	0	0	1	1	1	1	4	3	2	2	
Ν	0	0	0	0	0	0	0	0	1	1	1	1	3	4	2	2	
0	0	0	0	0	0	0	0	0	1	1	1	1	2	2	4	3	
Р	0	0	0	0	0	0	0	0	1	1	1	1	2	2	3	4	

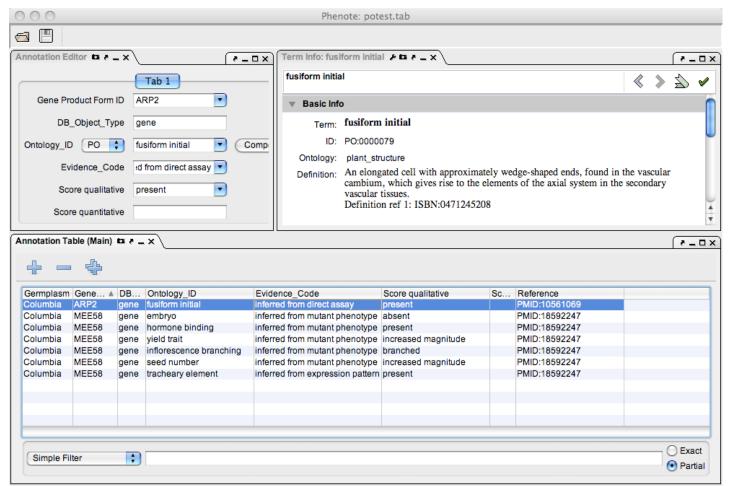
Scale-1	Scale-2	Scale-3	Scale-4
0	Resistant/tolerant (R)	Susceptible (S)	R/S
2-3	Moderate R	Moderate S	-
5	Normal (no change)	Normal	Moderate
7-8	Moderate S	Moderate R	
9	S	R	S/R

Do we benefit from TO ?

Standard EQ Terms

The standard PT term is a pre-coordinated EQ term; this can easily be defined as:

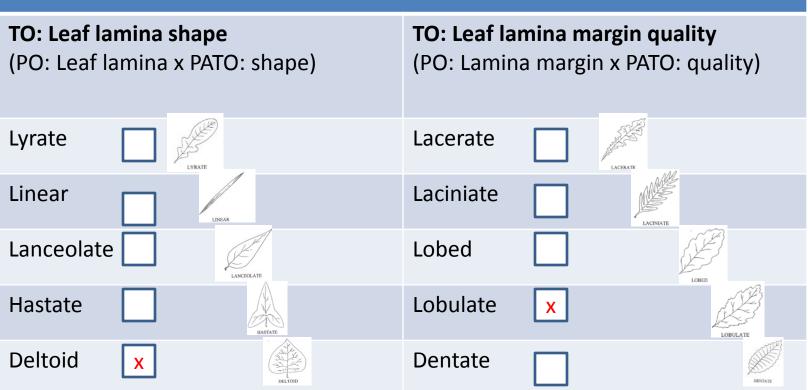
A <Q> *which* inheres_in an <E>


i.e. a quality carried by a bearer entity

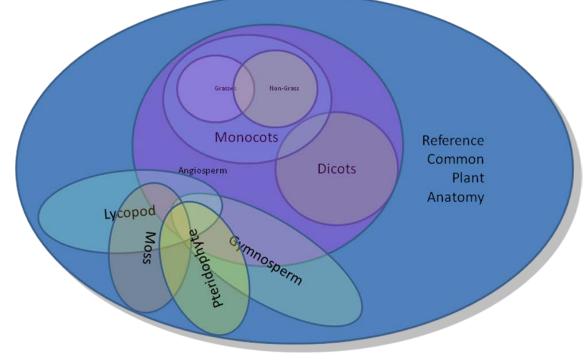
Benefits

- PATO definitions of qualities can be shared and reused
- The oboedit reasoner can keep TO in sync with PO/GO/ChEBI, Taxonomy, EO and PATO, and perform automatic DAG placement of terms
- PATO terms can be used to query TO-annotated phenotypes
- PO/GO/ChEBI, Taxonomy, EO terms can be used to query PT-annotated phenotypes
- Users/curators do not have to deal with post composition of terms with about 100K entity terms from different knowledge domains.

Phenote Annotation tool


With Two Configurations : Advanced and 'Smart'

Custom Phenote tool (phenote.org) allows inputs by authors. Advanced configuration allows savvy users to build cross-products for phenotype annotations.


Creating Character Matrices

PO: Leaf

Sample: xxxxxxxxx Species: xxxxxxxxx Source: xxxxxxxxxx

Do we need multiple Plant anatomy/trait ontologies?

Create various version and sub-versions of the PO that may cater to two aspects of the Ontology.

- Common Reference Ontology for Plants (CROP)
 - Clade-specific Enriched Ontologies (CLEO)

Challenges

- Encourage species-specific vocabularies to use cross references to PO and TO terms
- Share annotations for robust comparison and hypothesis building
- Shortage of plant-specific phenotypic descriptors in PATO
- Add mapping files for clade oriented trait/phenotype glossaries
- Build consensus on metadata and minimal information guide

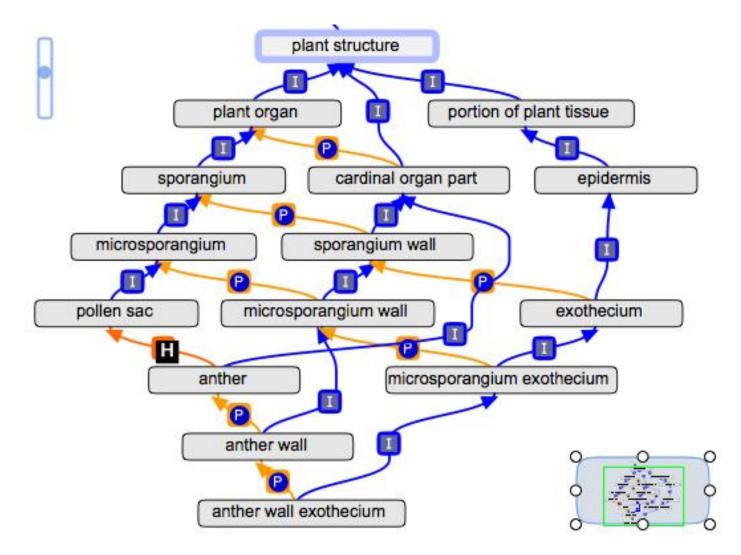
Capturing Phenotype Metadata

BioMart - MartView × QlicRice	a web interface for abiotic st ×			☆ - C S - plant ensembl					
Filters	View	40			U C				
[None selected]	View 10 - rows as HTML - Unique results only								
Attributes		Chromosome	Position on		Phenotype name				
Variation ID	Variation ID	name	Chromosome (bp)	Phenotype description					
Chromosome name Position on Chromosome (bp) Phenotype description	ENSVATH00806453	<u>5</u>	<u>216296</u>	Results expressed as binary data - determined by the presence (1) or absence (0) of anthocyanin in all 4 plants / accession after 5wks of growth [22C and 16 hrs daylight]	Anthocyanin 22				
Dataset	ENSVATH00806453	<u>5</u>	<u>216296</u>	Results expressed as binary data - determined by the presence (1) or absence (0) of anthocyanin in all 4 plants / accession after 5wks of growth [22C and 16 hrs daylight]	Anthocyanin 22				
[None Selected]	ENSVATH00806453	<u>5</u>	<u>216296</u>	Results expressed as binary data - determined by the presence (1) or absence (0) of anthocyanin in all 4 plants / accession after 5wks of growth [22C and 16 hrs daylight]	Anthocyanin 22				
	ENSVATH00806453	<u>5</u>	<u>216296</u>	The length of 5 siliques was measured for each accession after growth had concluded [16C and 16 hrs daylight]	Silique 16				
	ENSVATH00806453	<u>5</u>	<u>216296</u>	Results expressed as binary data - determined by the presence (1) or absence (0) of anthocyanin in all 4 plants / accession after 5wks of growth [22C and 16 hrs daylight]	Anthocyanin 22				
	ENSVATH00806453	<u>5</u>	<u>216296</u>	The length of 5 siliques was measured for each accession after growth had concluded [16C and 16 hrs daylight]	Silique 16				
	ENSVATH00806453	<u>5</u>	<u>216296</u>	Flowering time was scored as the number of days between germination date and appearance of the first flower [Growth in greenhouse at 20C with 16hrs daylight]	FT GH				
	ENSVATH00806453	<u>5</u>	<u>216296</u>	Number of days following stratification to opening of first flower. The experiment was stopped at 200 d and accessions that had not flowered at that point were assigned a value of 200 [18C and 8 hrs daylight]	SD				
	ENSVATH00806453	<u>5</u>	<u>216296</u>	Number of days following stratification to opening of first flower. The experiment was stopped at 200 d and accessions that had not flowered at that point were assigned a value of 200 [18C and 8 hrs daylight]	SD				

Plant Ontology

all : all [46545] 🚸

PO:0025131 : plant anatomical entity [46280] •

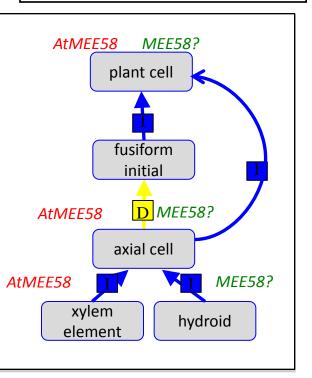

- PO:0009011 : plant structure [46280]
- PO:0009012 : plant growth and development stage [38493]
 - PO:0007021 : plant structure development stage [20900]
- Has two classes for **Plant Anatomical entities** and **Growth and Development**
- Every term has definition
- Every term has is_a relationship as mandated to have single inheritance (some terms may have multiple for enriched biological reasoning)
- Use multiple relationship types
 - is_a, part_of, has_part, adjacent_to, develops_from, derived_from, participates_in

Vision for Plant Ontology:

- Encompass <u>all</u> plants
- Facilitate consistency in:
 - Annotation of comparative genomics data
 - Cross-database queries
- Develop PO as a reference ontology for plants:
 - Provide mappings to other ontologies in use by plant databases
- Create cross-products to other ontologies such as PATO, to describe phenotypic characters

An example from PO Anatomical Entity

The Plant Ontology facilitates comparative plant genomics, developmental biology and systematics


Annotations to leaf primordium ; PO:0000017 and its children

Get this data as RDF-XML.

leaf primordium ; PO:0000017 [show def]

Qualifier	Name / Symbol	Information	Evidence	Reference	Assigned by	Associated
	AN3 AT5G28640	gene from Arabidopsis thaliana	IEP	PMID:15960617	TAIR	GO
	ARF4 AT5G60450	gene from Arabidopsis thaliana	IDA	PMID:16199616	TAIR	GO
	AS2 AT1G65620	gene from Arabidopsis thaliana	IDA	PMID:17559509	TAIR	GO
	AT1G13400.1 AT1G13400	gene from Arabidopsis thaliana	IDA	PMID:16554365	TAIR	GO
	AT1G22840.1 AT1G22840	gene from Arabidopsis thaliana	IDA	PMID:16113211	TAIR	GO
	AT3G33520	gene from Arabidopsis thaliana	IDA	PMID:16155178	TAIR	GO
	ATGA2OX2 AT1G30040	gene from Arabidopsis thaliana	IDA	PMID:16139211	TAIR	GO
	ATGA2OX4 AT1G47990	gene from Arabidopsis thaliana	IDA	PMID:16139211	TAIR	GO
	ATH1 AT4G32980	gene from Arabidopsis thaliana	IEP	PMID:17908157	TAIR	GO
	ATHB-12	gene from Arabidopsis	IDA	PMID:15604708	TAIR	GO

Cross-taxa comparisons:

>500,000 associations for >1300 terms

Source: Laurel Cooper

Plant Ontology Taxon Relevance, Synonyms and Xrefs

subsetdef: Angiosperm "Term for angiosperms"

subsetdef: Arabidopsis "Term used for Arabidopsis"

subsetdef: Bryophytes "Term used for mosses, liverworts, and/or hornworts"

subsetdef: Citrus "Term used for citrus"

subsetdef: Gymnosperms "Term used for gymnosperms"

subsetdef: Maize "Term used for maize" subsetdef: Musa "Terms used for banana"

subsetdef: Poaceae "Term used for grasses"

subsetdef: Potato "Term used for potato"

synonymtypedef: Japanese "Japanese synonym" EXACT synonymtypedef: Plural "Plural" EXACT synonymtypedef: Spanish "Spanish synonym" EXACT treat-xrefs-as-is_a: CARO dbxrf: CL:Cell_type | GO:cellular_component | APweb

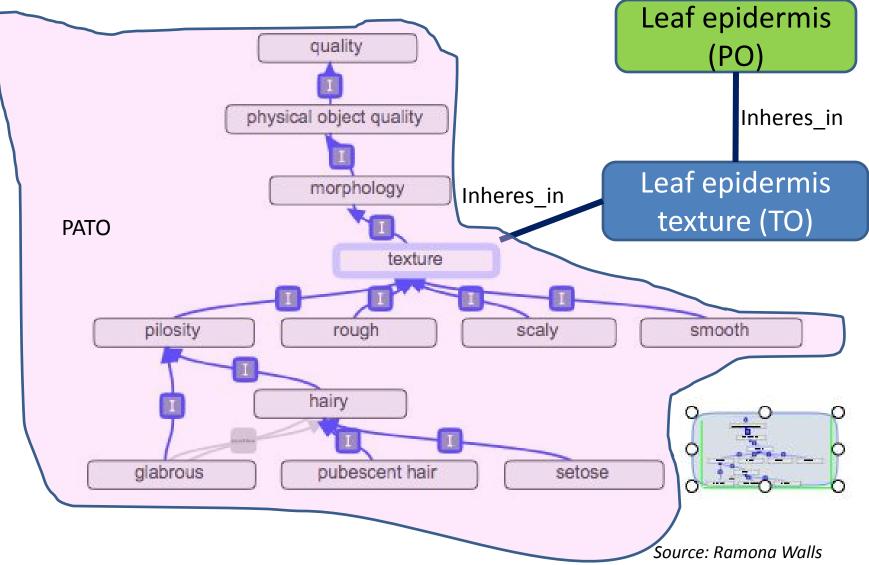
subsetdef: Solanaceae "Term used for solanaceous plants"

subsetdef: Pteridophytes "Term used for ferns and allies"

subsetdef: reference "reference plant structure term"

subsetdef: Rice "Term used for rice"

subsetdef: Tomato "Term used for tomato"


subsetdef: TraitNet "Plant Functional Traits"

Examples of shape qualities that are relevant to leaves

Source: Ramona Walls

Examples of textures that are relevant to leaves

