

Community Ontology Development

Ontology:

Sets of classes (terms) with relationships between them that describe a given domain

Annotation

Associating some object (e.g. protein, gene, experiment) with ontology terms with some evidence

OBO Foundry

http://www.obofoundry.org/

"a suite of orthogonal interoperable reference ontologies in the biomedical domain"

Overview

- 1. Scope
- 2. Users
- 3. Development mechanism
- 4. Standards
- 5. Community input
- 6. Publicize
- 7. Feedback cycle
- 8. Document

1. Define your scope

- Related efforts
- Make contact
- Know what's out there

3. Decide on a mechanism for development

Editors

• Who can edit the ontology?

- Versioning system or database
- Critical that you know what others are working on

 Remember – no system is a replacement for communication between developers!

Developing GO

- Core editors
 - **5-10** editors
 - Communicate extensively
 - Distributed globally
 - Only these people are direct editors

Developing GO

- Per term requests
- Major overhauls
- Systematic changes

4. Define and use standards

Naming conventions

ournal List > BMC Bioinformatics > v.10; 2009

BMC Bioinformatics. 2009; 10: 125.

Published online 2009 April 27. doi: 10.1186/1471-2105-10-125

Copyright © 2009 Schober et al; licensee BioMed Central Ltd.

Survey-based naming conventions for use in OBO Foundry ontology development

PMCID: PMC2684543

BMC Bioche

Daniel Schober, ^{1,2} Barry Smith, ³ Suzanna E Lewis, ⁴ Waclaw Kusnierczyk, ⁵ Jane Lomax, ¹ Chris Mungall, ⁴ Chris F Taylor, ^{1,6} Philippe Rocca-Serra, ¹ and Susanna-Assunta Sansone ¹

Relationships

- Use standard where possible
- Define where not

Good ontology design

- rubbish in = rubbish out
- modularity
- pragmatism v/s perfectionism

5. Use your community

Community input to GO

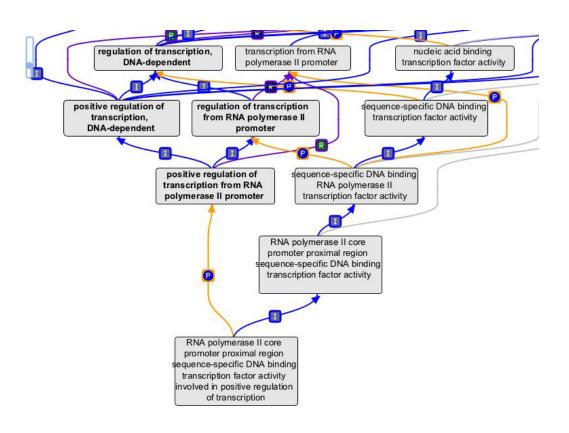
- · Public tracker, email discussion lists
- Involvement in specific development projects
- Direct term submission
- Community annotation tools

6. Publicize

- · Make sure people know you're there
- OBO Foundry, Ontology Lookup Service, BioPortal
- Publish
- Advertise

7. Development cycle

- Ontologies should be developed interatively
 - need mechanism to communicate changes to users
 - Static ontologies are not useful
 - Don't wait until it's finished before you start using it


8. Document

- It's boring, but you'll thank yourself in the long run
- Document how and why you made decisions, how you think terms should be used

9. Other considerations

post-v/s pre-composition

Adding logical constraints to terms

- Adds valuable reasoning power
- Automatic term placement, definition generation etc.
- Requires more thought per term