Ontology - Crop Breeding Perspective

Peter Jack Ontology Workshop Hinxton, 8-9th Dec 2011

My Role & Limitations of Research in Breeding Companies...

- Genotyping lead for RAGT cereal crops
 - Development of markers
 - Application in breeding programmes
- Main crop is hexaploid wheat
 - But comments will apply to most field crops
- Royalty return of inbred crops limits in house research
 - Public sector research collaborations are critical
 - Need to be able to integrate results across labs and across traits
 - Consistent *trait* description critical

Breeding & Trait Specification

- Crop Breeding is a Commercial Activity
 - Failure to sell varieties to farmers > insolvency
- Farmer informed by HGCA Recommended List (RL) of Varieties
 - This defines variety specification for breeder to select for
 - Essentially performance traits
 - Agronomic: Yield, Disease Resistance, Phenology, Lodging (often relative scale eg 1-10)
 - End user requirements: Functionality of grain
 - Very few relate to variation in Ontologic descriptors (grain size may be exception)
 - Downloadable from HGCA site
- Varieties also need to pass DUS (Distinctness, Uniformity, Stability)
 - Morphologic traits captured in detail (every minute part of ear named!)
 - Although closer to Ontologic characters, important to remember that they do not relate to productivity – just descriptions of a variety.

Breeding, Genomics & Need for Ontology?

- Marker-assisted breeding becoming increasingly important
- Key traits usually quantitative. Steps in marker development:
 - Develop segregating populations & phenotype
 - Sub-traits sometimes identified: eg yield > grain/ear or grain/m2, grain size, biomass...
 - Genotype & QTL identification
 - QTL validation (BC generation of NILs, use of advanced breeding lines...)
 - Fine mapping (ideally gene identification!)
 - > Diagnostic Marker
 - Long process!
- High marker density SNP platforms > AG approaches feasible
- And NGS/BSA
 - May be possible to get close to genes in 1 step
 - Useful to be able to identify candidate genes in a region
 - from gene/trait relationship in other species eg rice>wheat grain size.
 - Consistent ontology may be important to make correct queries?

Future....?

- If
 - productivity traits can be reduced to ontologic entities
 - and genes for these entities identified
 - and mechanism of action/biochemistry of genes determined
- Then
 - can improved alleles be predicted (sequence change)
 - and improved alleles be mined or generated (mutagenesis)??

QTL database

- Not specifically an ontology issue but illustrates common problem
- Pressing need to collate UK public QTL data into single database.
 - Whole is greater than sum of parts
 - Query 1 show me all QTLs in specific region
 - To look for trait interactions (eg yield/quality/disease)
 - Query 2 show me all regions for specific trait
 - To look for pedigree relations, GxE effects
- Key UK wheat population is Avalon/Cadenza
 - Many groups using same pop/genotype but for different traits
 - Should be simple to integrate data
 - No attempt to coordinate this lots of excel files....
- AG work will present same type of problem
- Perhaps this could be anearly step in relating ontology to phenotype ie collecting the phenotype in a single location?

Conclusions

- Can standard Ontologies be mapped onto existing & accepted phenotypes (RL, Zadoks, Phenology)
- May be difficult for productivity traits directly

 Need to agree sub-traits (& their naming!)
- Ontology is not the only issue eg QTL database for collation of phenotype