





## Field-based phenotyping of agronomic traits

#### Daniel Kindred, ADAS Boxworth

Crop Ontologies Workshop 8 Dec 2011





www.adas.co.uk

## **ADAS crop research**

- Understand how genetic, husbandry & environmental factors affect crop production
- 13,000 field plots per year
- Wide range of environments
- Wide range of measurements
  - Crop
  - Disease & pests
  - Environment



## **Crop Physiology Measures**

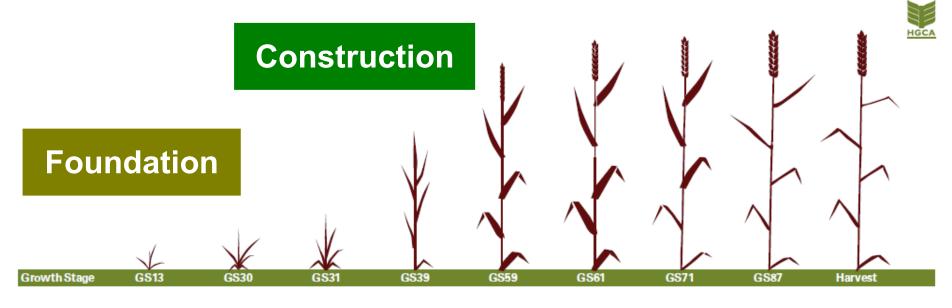
- Yield
  - per ha
    - @ traded moisture content
- Growth
  - per ha
    - . @ 100% dry matter
- Development
- Quality
  - Grain protein %DM
    - Grain N% x 5.7
  - Specific weight
- Other agronomic traits
  - Lodging
  - Rooting
  - Senescence
  - Disease incidence, severity & tolerance
  - N requirement





## **Development**

#### Common framework across cereal crops


- Seedling 11...19 leaves
- Tillering 21 ... 29 tille
- Stem extension 30 ... 31 in
- Booting
- Ear emergence 51
- Flowering
- Grain Filling
- •
- . Ripening
- 21 ... 29 tillers 30 ... 31 internodes 41 ... 49 51 ... 59 61 ... 69 71 ... 79 (milk) 81 ... 87 (dough)

91 ... 93

# Construction

Foundation

### Production



Growth Stage

## Wheat growth stages

**GS30** 

G

G

G G G G G

G

G G

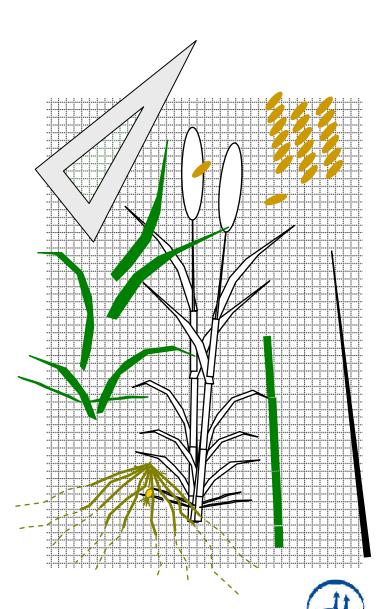


| Growth<br>Stage | Description of stage                            |
|-----------------|-------------------------------------------------|
|                 | Seedling growth                                 |
| GS10            | First leaf through coleoptile                   |
| GS11            | First leaf unfolded<br>( <i>ligule</i> visible) |
| GS13            | 3 leaves unfolded                               |
| GS15            | 5 leaves unfolded                               |
| GS19            | 9 or more leaves unfolded                       |
|                 | Tillering                                       |
| GS20            | Main shoot only                                 |
| GS21            | Main shoot and 1 tiller                         |
| GS23            | Main shoot and 3 tillers                        |
| GS25            | Main shoot and 5 tillers                        |
| GS29            | Main shoot and 9 or more tillers                |
|                 |                                                 |

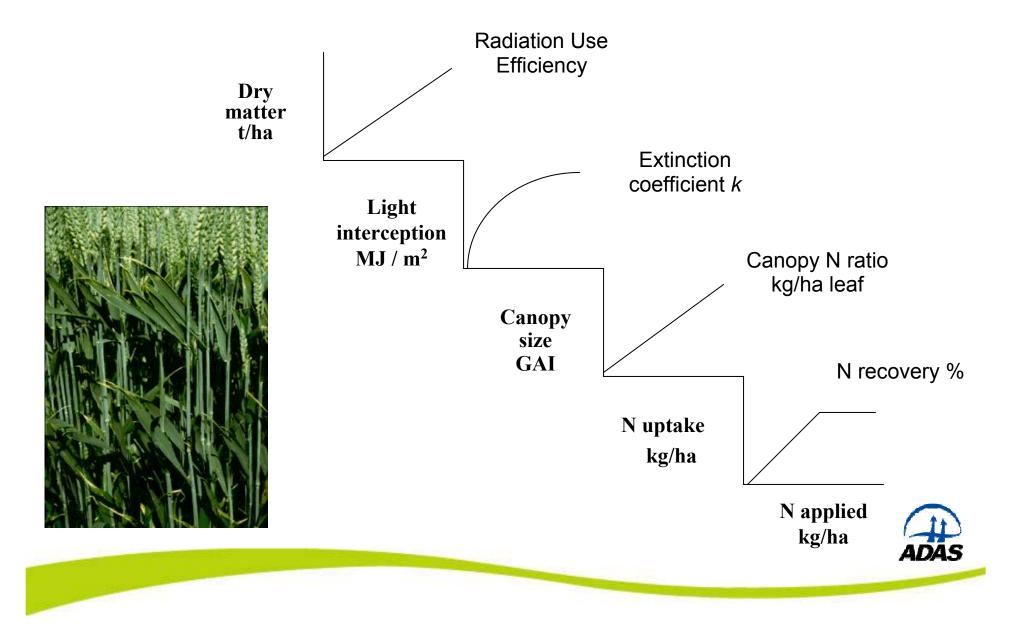
**GS13** 

| rowth<br>tage | Description of stage                  |
|---------------|---------------------------------------|
|               | Stemelongation                        |
| S30           | Ear at 1cm<br>(pseudostem erect)      |
| S31           | First node detectable                 |
| \$32          | Second node detectable                |
| S33           | Third node detectable                 |
| \$37          | Flag leaf just visible                |
| S39           | Flag leaf blade all visible           |
|               | Booting                               |
| S41           | Flag leaf sheath extending            |
| S43           | Flag leaf sheath just visibly swollen |
| S45           | Flag leaf sheath swollen              |
| S47           | Flag leaf sheath opening              |
|               |                                       |

**GS31** 


**GS39** 

| Growth<br>Stage | Description of stage                                      |
|-----------------|-----------------------------------------------------------|
|                 | Earemergence                                              |
| GS51            | First spikelet of ear just visible above flag leaf ligule |
| GS55            | Half of ear emerged above flag<br>leaf ligule             |
| GS59            | Ear completely emerged above flag leaf ligule             |
|                 | Flowering                                                 |
| GS61            | Start of flowering                                        |
| GS65            | Flowering half-way                                        |
| GS69            | Flowering complete                                        |
|                 | Milk development                                          |
| GS71            | Grain watery ripe                                         |
| GS73            | Early milk                                                |
| GS75            | Medium milk                                               |
| GS77            | Late milk                                                 |


| Grow th<br>Stage | Description of stage                      |
|------------------|-------------------------------------------|
| oneye.           | Dough development                         |
| GS83             | Early dough                               |
| GS85             | Soft dough                                |
| GS87             | Hard dough<br>(thumbnail impression held) |
|                  | Ripening                                  |
| GS91             | Grain hard<br>(difficult to divide)       |
| GS92             | Grain hard<br>(not dented by thumbnail)   |
| GS93             | Grain loosening in daytime                |
|                  |                                           |

## **Yield determination :**

- Harvest components
  - Ears/m<sup>2</sup> x Grains/ear x TGW
- Biomass x Harvest Index
- Nitrogen components
  - N capture x N harvest index ÷ grain N%
- Phases
  - Construction
    - Duration x Rate x Redistribution (%WSC)
  - Production
    - Duration x Rate.



## **Resource capture & yield**



## **Measuring Crop Growth**

- . Germination (% seeds sown)
- Emergence (% seeds sown)
- Establishment (% seeds sown)
- Plant population (plants m-2)
- Shoots m-2 (main shoots & tillers)
- Biomass (t/ha)
- Green Area Index (m2/m2)
  - (ground cover %)
  - Light interception (%, MJ)
- N uptake (kg/ha)
- Canopy N ratio (kg N /ha leaf)
- Shoots/plant
- Height (cm)
- Partitioning (DM & N) stems leaves (roots)
- Stem water soluble carbohydrates (WSC)
- Ears m-2
- Florets per spikelet
- Spikelets per ear
- . Grains per ear
- Grain weight (mg grain<sup>-1</sup>)







## **Measurement issues**

- Agronomically important crop traits are high level, complex & quantitative
- Crops are populations of plants
  - Very different to individual plants
  - Compensatory growth gives interactions between traits and limits effects of individual traits on yield t/ha
    - Eg  $\uparrow$  ears m<sup>-2</sup>  $\downarrow$  grains ear<sup>-1</sup>



## **Measurement issues**

- Large effects of environment
  - Extreme variability
    - spatially & year to year
  - Interacts with genetic variation
    - Variation often reduced with high plant populations
- So Crucially Important to define the environment
- Large errors on area based measures
  - Quadrats give different results to combine harvest yield
- Measuring is expensive
  - Increasing use of indirect quick measures
    - Eg reflectance, canopy temperature
    - Often enables ranking of varieties within a measurement event
      - but values may be arbitrary
    - Calibrations with useful traits possible
      - but often confounded and not robust



