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CHAPTER 1

1 Approaching bioinformatics

Bioinformatics has become a key discipline in modern biology (Hagen, 2003; Searls,
2010; Ouzounis, 2012). Major factors in this development have been various tech-
nological advances, allowing to create vast amounts of biological data, sometimes
referred to as »big data« (O’Driscoll et al., 2013). Such data should be stored,
interpreted and integrated to answer biological research questions appropriately
and to generate new ideas and new research leads. As a result of these advances,
biology has become a more quantitative and a much more data-driven science
(Schneider and Jungck, 2013). Bioinformatics is at the interface of data, computer
science and biological research. In recent years, the development and application
of bioinformatics methods has led to many applications in different branches of
biology, such as medicine or plant breeding. Originally defined as and aimed at the
study of informatic processes in biotic systems, it has developed into computational
methods for (comparative) analysis of genome and other »omics« data (Hogeweg,
2011). Bioinformatics has a dual nature, not only in the combination of biology
and computer science, but also in serving as a tool for biologists on the one hand
and as a separate research field, sometimes referred to as »computational biology«
(Searls, 2010) on the other hand. Like in statistics, most bioinformatics approaches
can be applied in multiple settings and are independent of particular species or
biological models. This inherent flexibility of the tools of bioinformatics has con-
tributed to their wide-spread use. Despite such flexibility, methods generally need
to be adapted due to the particular aspects of the biological research topic under
study, as well as the nature and quality of data available. Unlike human research
with one organism as the central focus of attention, plant bioinformatics generally
deals with different species that each present their own data, challenges and issues.
This thesis presents a showcase of plant bioinformatics, with examples of genome
annotation, comparative genomics, gene function prediction and the analysis of
network topology for gene function prediction, for which core methods are used
and developed. These topics will be outlined in the remainder of this introduction
and described in more detail in the subsequent chapters. Many analyses center
around two commercially interesting crops of the Solanaceae or nightshade family,
tomato (Solanum lycopersicum) and potato (Solanum tuberosum). The specifics
of the bioinformatics for these two crops will be introduced at the end of this
introduction.

2 Genome annotation

A genome sequence as such does not allow biological insight into its structure and
the function of the elements it contains, such as genes, non-coding RNA or trans-
posons. The annotation of a genome assumes proper assembly, which is not always
guaranteed (Florea et al., 2011; Schatz et al., 2012). Next, it involves identifying
genes, developing gene models and assigning functions to these. Proper annota-
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tion is an important step for further research. Although a staggering amount of
sequence data is now available, genome annotation is still a challenge (Yandell
and Ence, 2012). The annotation of any genome can be divided into two distinct
processes: structural and functional genome annotation. Structural genome anno-
tation is the process of identifying genes, their intron-exon structures and all other
components that are present in a genome. To annotate structural elements in a
genome, a wealth of methods and pipelines is available. Functional genome anno-
tation is the process of attaching metadata to structural annotations to enable a
biologically appropriate interpretation of an identified feature. Metadata can be
extremely diverse and range from the molecular function of an individual element
to a complete biological pathway characterization of several elements (Yandell and
Ence, 2012). Metadata tend to focus on function in the form of Gene Ontology
terms (Yandell and Ence, 2012).

2.1 Structural genome annotation

Structural annotation of a genome consists of a few consecutive steps. First, all
repeats are identified (RepeatMasker http://www.repeatmasker.org), in addition
to other non-coding and often repetitive elements, such as rRNA, tRNA and
other non-coding RNA (tRNAscan-SE (Schattner et al., 2005); RFAM (Burge
et al., 2013)). Repeats and repetitive elements form a major fraction of eukaryotic
genomes (Zhi et al., 2006). In the next step, all elements are marked and excluded
from further analyses (masked). Unless these elements are effectively masked,
subsequent gene annotations may contain portions of transposons, viruses and
other disturbing elements (Cantarel et al., 2008). The masked genome sequence is
the input for most structural annotation programs that predict genes. There are
three main approaches in gene prediction: (7) ab initio, that predicts gene mod-
els solely based on probabilistic models (AUGUSTUS (Stanke and Waack, 2003);
SNAP (Korf, 2004); GenelD (Parra et al., 2000); mGene (Schweikert et al., 2009))
(#i) evidence-based, that incorporates experimental evidence such as cDNA, EST
or RNA-seq data and (éif) homology-based gene prediction that uses sequence
information of related organisms based on evolutionary conservation (fig. 1.1).
In both, evidence-based and homology-based gene prediction, sequence reads are
aligned to the genomic sequence to detect exons and exon-intron boundaries and
develop gene models (GMAP (Wu and Watanabe, 2005); Exonerate (Slater and
Birney, 2005); BLAST (Altschul et al., 1997)). The part of the genome identified
as protein-coding is translated using the appropriate translation table. With the
decline of DNA sequencing costs, evidence-based genome annotation is more and
more based on RNA-seq data. New annotations are incorporating RNA-seq data
(Trinity (Grabherr et al., 2011); GSNAP (Wu and Nacu, 2010); TopHat (Trap-
nell et al., 2009)) and homology-based annotation approaches (Holt and Yandell,
2011). In the last step, the various results of different annotation programs are
combined (integrated) to the structural genome annotation (fig. 1.1) (JIGSAW
(Allen and Salzberg, 2005); EvidenceModeler (Haas et al., 2008)) that serves as
input for the functional genome annotation.
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Figure 1.1: Schematic representation of the gene annotation process. Different types
of predictions (ab initio, homology-based and evidence-based) are integrated into a full
gene model (blue).

2.2 Functional genome annotation

Functional genome annotation is very diverse (Yandell and Ence, 2012), as »func-
tion« in a biological context is a broad concept with many layers of complexity.
An integral part of such annotation is generally the prediction of protein domains
(Friedberg, 2006). Identified protein domains can be matched against clusters of
homologous protein domains (protein families; Punta et al., 2012), enabling (if
available) the transfer of functional information. Several databases, such as Pfam
(Punta et al., 2012) and InterPro (Jones et al., 2014) are available to perform
this type of function transfer. An important aspect of functional genome anno-
tation featuring in this thesis is connecting genes and proteins with functional
information in the form of Gene Ontology-terms. The Gene Ontology (GO) offers
structured controlled vocabulary (ontology) terms that mark the de facto stan-
dard for the annotation of function (du Plessis et al., 2011). GO consists of three
separate and independent ontologies that describe in a species-independent man-
ner domain knowledge how genes associate with biological processes (BP), cellular
components (CC) and molecular functions (MF). GO is organized as a directed
acyclic graph (fig. 1.2) to define relationships between terms of the ontology in
a way that a computer can easily deal with (Gene Ontology Consortium, 2000).
MF terms describe activities of molecules (fig. 1.2A), such as the enzyme catalytic
activity or binding activity at the molecular level. MF terms generally do not rep-
resent molecules or molecule complexes, nor do they contain information about the
location or the biological context of the activity described (Gene Ontology Con-
sortium, 2000). On top of MF, BP terms give information about biological context
(fig. 1.2B), e.g. »response to cold« (Gene Ontology Consortium, 2000). BP terms
are a concatenation of multiple molecular events and therefore tend to describe
higher, more abstract levels of function. Ideally, the GO terms associated with a
gene or protein, are determined by biological experimentation, such as creating
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Figure 1.2: Example of graphs of a molecular function and biological process annotation.
(A) molecular function. (B) biological process. The arrows indicate a »is a« relationship.

mutant phenotypes or using gene expression. Such experimentation is, however,
generally time-consuming and can be challenging and/or costly, especially relative
to the efforts needed to generate genomic sequence data (Lee et al., 2007; Sboner
et al., 2011). As a result, there is currently a lot of genome data without any
experimental backing, verification or curation (Clark and Radivojac, 2011).

The large gap between experimental annotation and available (sequence)
data has motivated the development of computational functional annotation. Var-
ious approaches are put forward in the literature, such as Blast2GO (Conesa et al.,
2005), BMRF (Kourmpetis et al., 2010) or Argot2 (Falda et al., 2012). Generally
(and often indirectly), the function of a protein is inferred from sequence similarity
(if only in part) to a protein with experimental annotation (Radivojac et al., 2013).
Databases, such as UniProt (UniProt Consortium, 2014), provide the link between
a sequence and functional annotation, which can be used to transfer function to an
unannotated protein, given sufficient sequence similarity (homology-based transfer
of function). The starting point is that sufficiently similar sequences are homolo-
gous (conserved in evolution) and are therefore likely to have similar or identical
functions (Friedberg, 2006). Inferring homology from sequence similarity is not
a trivial task and has been subject of debate since its discovery (Dalquen and
Dessimoz, 2013). This difficulty exists partly due to the fact that, despite the
correlation of sequence similarity and function, the 3D structure of a protein is
neglected. Hence, function prediction methods face two types of error, the func-
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tion was not predicted (false negative) or the predicted function is incorrect (false
positive) (Friedberg, 2006; Furnham et al., 2012). The latter one poses one of
the biggest problems in function prediction. For complete genomes, error rates
for correct prediction of enzymatic function can be up to 40% depending on the
type of function predicted (Lee et al., 2007; Schnoes et al., 2009). As result, an
immense amount of cut-offs and methods are available to improve sequence-based
function prediction. Still, a high error rate remains in current predictions and
databases (Jones et al., 2007). In particular, the effect of annotation errors can be
amplified by error propagation in databases. Erroneous functional annotation in
a database might be used to newly annotate unannotated proteins. Applied in an
iterative fashion, a chain of misannotations is created (error percolation), lowering
the quality of the database (Gilks et al., 2002). Error percolation makes it difficult
to discover and trace back the error. However, with the standardization by the
Gene Ontology, this situation improves. One major reason is the attachment of
evidence codes to annotations. Evidence codes give information about the source
of the annotation, making it possible to distinguish between experimental, e.g.
pinferred from mutant phenotype« (IMP) or »inferred from direct assay« (IDA),
and electronically inferred, e.g. »inferred from sequence similarity« (ISS), annota-
tions. This source of information gives the possibility to spot errors more easily.
Recent research results suggest that the quality of the GO-database is increasing,
despite its rapid growth (Skunca et al., 2012). Further improvements could include
reliability or quality information as supplement for annotated functions.

Whereas sequence similarity is a useful proxy for MF, sequence information
has lower information content for the prediction of the biological context captured
in BP terms. BP terms represent more abstract functionality, namely a concatena-
tion of multiple steps at the cellular and organismal level which is hardly contained
in the sequence. Homology-based transfer of function has therefore a low predic-
tion performance for BP terms (Radivojac et al., 2013). Experiments comparing
multiple species show a performance difference of 20% between MF and BP (Nehrt
et al., 2011; Altenhoff et al., 2012). To be able to predict BP terms with biological
relevance sufficiently accurately, additional data with other information context
is required. Biological networks are such an additional data source (Sharan et al.,
2007). It has been shown that network data contain information about biological
process-related protein function and therefore help to improve the performance
of function prediction algorithms (Sharan et al., 2007; Vital-Lopez et al., 2012),
including guilt-by-association (Oliver, 2000) or BMRF (Kourmpetis et al., 2010).
Network data can be created from different data sources, might contain time-point
information or be computationally inferred. In the context of function prediction,
networks are generally created from experimental data, for example from yeast
two-hybrid experiments, co-expression data or direct protein-interaction measure-
ments (Sharan et al., 2007).

In general, a network (also called a graph) is a set of components (nodes)
that are connected by links (edges) (fig. 1.3). In biological networks, these compo-
nents represent genes, proteins, or, more abstract, molecules (Barabasi and Oltvai,
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Edge

Node

Figure 1.3: Example of a biological network with scale-free topology. Proteins (nodes)
that interact with each other share a connection (edge). Few nodes (hub nodes; black
filled circle) have a high amount of edges, whereas the majority of proteins (empty circle)
possesses a small amount of edges.

2004; Zhu et al., 2007). In the context of function prediction, nodes correspond al-
most exclusively to proteins. To perform a function, proteins often form complexes
or interact with other proteins. This concept can be transferred naturally to bio-
logical processes, making biological networks a perfect match for BP prediction.
By using experimentally characterized interaction partners, the function of an un-
characterized protein can be predicted (Jansen et al., 2003; Barabési and Oltvai,
2004; Hu et al., 2010). On a global level, proteins fall into two classes, proteins
with pre-existing annotations and unannotated proteins. Statistical frameworks
require these pre-existing annotations (training data) to propagate the functional
annotation on the basis of the connections in the network to unannotated proteins
(Sharan et al., 2007; Pavlidis and Gillis, 2012). The framework explored and aug-
mented in this thesis is the Bayesian Markov Random Fields (BMRF) approach,
that was specifically developed for network-based prediction of protein function
(in terms of BP) (Kourmpetis et al., 2011). BMRF requires initial training data
to perform function prediction. The initial training data can consist of (experi-
mental) BP annotation from e.g. the Gene Ontology. Given initial experimental
annotation and network information, BMRF calculates the probability of a protein
or gene belonging to a BP term. This thesis presents multiple new approaches to
improve the performance of BMRF, notably by addressing the quality of the input
(chapters 4 and 5).
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3 Comparative genomics

The goal of comparative genomics is to give insight into functions of genomic
elements and evolution of organisms. Both aspects, function and evolution, are
connected by the central paradigm that conserved genomic elements are function-
ally important (Koonin and Galperin, 2003; Alf6ldi and Lindblad-Toh, 2013). The
opposite is, however, not necessarily true. Genomic elements can have a (biological)
function without being conserved (Alfoldi and Lindblad-Toh, 2013). Two or more
genomic elements are called (evolutionary) conserved if their sequences show signif-
icant similarity (Durbin et al., 1998), which is used to establish homology (Koonin
and Galperin, 2003). With the availability of completely sequenced genomes, it
becomes possible to compare the sequences to detect conserved elements, unravel
their evolutionary relationships and pinpoint differences in genomes, such as losses,
duplications or rearrangements. These steps are in essence the definition of com-
parative genomics. Once compared, inferences about function and detection of
unique genomic elements are possible. Genomic elements can be very diverse and
commonly comprise transcribed protein coding and non-protein coding sequences,
cis-acting elements and chromatin structures (Zheng et al., 2004). Comparative
genomics can be applied at many different levels, starting at the level of a single
individual to large populations, multiple species or even to the tree of life (Brown,
2007). Even though comparative genomics provides useful tools in understanding
function, it is limited by the evolutionary distance of and the lack of knowledge on
organisms that are compared. Comparative genomics loses its power when com-
paring very distant organisms. It becomes difficult to detect conserved elements
and their functions are likely to be different (Stojanovic, 2007). But also for closely
related species, the transfer of function requires an existing body of experimen-
tally studied genomic elements. The lack of experimental data leads to a large
amount of conserved elements without any functional information (Galperin and
Koonin, 2010). Yet, the growing number of sequenced genomes makes compara-
tive genomics more powerful to analyze the evolutionary history of genomes. In
particular in the analysis of the plant genomes, comparative genomics has become
an important tool. Notable highlights are the breeding for traits such as resistance
or yield (Krieger et al., 2010; Ranjan et al., 2012) and tracing back the history of
plant domestication (Morrell et al., 2011).

3.1 Concepts of evolutionary genomics

A large part of comparative genomics is devoted to elucidating evolutionary re-
lationships between genomic elements and species. Evolutionary relationships can
be used to make inferences about function, but they are also of interest by them-
selves (Koonin and Galperin, 2003). The most basic relationship between two ge-
nomic elements is homology, denoting »common decent« of two entities. Homologs
are categorized into orthologs and paralogs. Orthologs are related via speciation,
whereas paralogs are related via duplication (Koonin, 2005). Orthologs typically
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retain the same function following speciation, while paralogs are likely to diverge
with new functions through point mutations and domain recombinations (Chen
et al., 2007; Altenhoff et al., 2012). Hence, orthology and, on a finer grained level,
protein domains are widely used to infer (molecular) function (Kuzniar et al.,
2008; Engelhardt et al., 2011; Kristensen et al., 2011; Hunter et al., 2012). With
the concept of orthology and paralogy, it becomes possible to outline the evo-
lution of genes and gene families in multiple species. The relationships between
genes of different organisms are commonly represented by a phylogenetic tree. To
construct a phylogenetic tree, several basic steps are necessary (¢) multiple se-
quence alignment (MAFFT (Katoh and Standley, 2013); Clustal Omega (Sievers
et al., 2011)) (¢) manual curation of the alignment (7i) estimation of the phyloge-
netic tree (RAXxML (Stamatakis, 2006); PhyML (Guindon et al., 2010); MrBayes
(Ronquist and Huelsenbeck, 2003)) (#v) visualization (Archaeopteryx (Han and
Zmasek, 2009); Dendroscope (Huson and Scornavacca, 2012)). The reconstructed
tree allows insights into the evolution of genomic complexity and lineage-specific
adaptations (Koonin, 2005; Guo, 2013) with implications for (molecular) gene func-
tion (De Smet and Van de Peer, 2012). More importantly, phylogenetic trees allow
a detailed reconstruction of evolutionary distances, gene losses and duplications.

Studying complete gene families and their variation throughout the plant
kingdom, lineage-specific developments and the lack thereof, can give useful hints
towards the evolutionary mechanism behind gene family development (De Smet
and Van de Peer, 2012; De Smet et al., 2013). An example is the Snf2 subfamily
DRD1. The DRD1 subfamily shows a high variation throughout the plant king-
dom. This high variation might play a role in species-specific adaption of stress
response to the environment. In particular plant genomes that were subject to
large scale duplications and losses, provide a valuable resource for this kind of
studies (chapter 3). These studies contribute to the ultimate goal to elucidate the
relationship between genotype and phenotype (Brown, 2007).

3.2 Synteny and chromosomal rearrangements

Originally, synteny was used to denote genes that remain on the same chromosome
within or between organisms. Nowadays, synteny has shifted its meaning to specify
regions of common evolutionary ancestry (paralogous or orthologous regions), lead-
ing to an ambiguous usage (Passarge et al., 1999). Despite its ambiguity, synteny
analyses are frequently performed to study genomes. Here, (shared or conserved)
synteny refers to two or more homologous genes that reside on the same chromo-
some in two or more species, following earlier definitions of Nadeau (1989) and
Ehrlich et al. (1997). Synteny in itself is not restricted to the same gene order,
making it necessary to introduce »collinearity« as additional concept. Collinear-
ity indicates that syntenic genes also show the same ordering on the chromosome
when compared between organisms (Coghlan et al., 2005; Tang et al., 2008a; Wang
et al., 2012a). Differences in synteny and/or collinearity are termed chromosomal
rearrangements and can be categorized in inversions, translocations, duplications
or losses (Van de Peer, 2004). The concepts of synteny and collinearity are mostly
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applied on a large scale, i.e. to analyze complete genomes and no single genes. In
particular for the analysis of plant genomes, these concepts are extremely useful.
Plant genomes have an enormous diversity and can differ to a factor of thousand in
genome size. To effectively study larger genomes, knowledge about chromosomal
rearrangements that can relate well-studied small genomes with unstudied large
genomes is paramount (Bowers et al., 2003; Tang et al., 2008a). Various software
applications facilitate the analysis of chromosomal rearrangements. Basic steps
include (7) sequence alignment (BLAST (Altschul et al., 1997); LASTZ (Harris,
2007); MUMmer (Kurtz et al., 2004)), () detection of homologous genes or re-
gions (MUMmer; reciprocal best BLAST hits (Tatusov, 2001; Kuzniar et al., 2008);
InParanoid (Remm et al., 2001); OrthoMCL (Li et al., 2003)) and (%) clustering
of homologous parts to syntenic and collinear segments (DAGchainer (Haas et al.,
2004); MCscan (Wang et al., 2012a); ADHoRe (Vandepoele, 2002)). With these
steps completed, the genomes of two or more organisms can be compared and their
relationships can be deciphered.

4 Plant bioinformatics: from model species to
actual crops

Since the publication of the Arabidopsis thaliana genome sequence in 2000 (Ara-
bidopsis Genome Initiative, 2000), plant biology has undergone significant changes.
A wealth of sequenced plant genomes — more than 80 at this point — has become
available. However, the experimental annotation of function is lacking far behind.
This situation is similar to non-plant bioinformatics, but the focus on a multi-
tude of species, either as model, crop or both, poses special challenges for plant
bioinformatics. In particular, the research on angiosperms (flowering plants) is a
complex task. Angiosperms show remarkable differences in genome size, result-
ing from whole genome duplications and large scale gene losses. Arabidopsis, for
example, has undergone three genome duplications accompanied by heavy gene
loss (Simillion et al., 2002). In addition to these large rearrangements, numerous
small scale rearrangements and repetitive elements were induced by mobile ele-
ments. All these events led to a severe genome reshuffling, obscuring evolutionary
traces (Tang et al., 2008a). As result, 80% of a plant’s genome may consist of
repetitive elements (Brenchley et al., 2012; Kim et al., 2014). With the study of
synteny between organisms, rearrangement events can be traced back. Often such
rearrangements can prevent proper pairing during meiosis and therefore support
reproductive isolation, eventually leading to speciation (Widmer et al., 2009). Par-
ticularly in breeding, the knowledge about rearranged regions plays an important
role in introgression of favorable traits from a wild cultivar into a crop plant. Thus
the delineation of chromosomal rearrangements may not only shed light on genome
diversity and evolution, but also contribute to novel strategies for modern plant
breeding (chapter 2). To progress further in plant breeding, not only rearrange-
ments are of interest, but also the functional aspect, i.e. connecting the genotype
with the phenotype.

10
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Despite the rapid growth of published plant genomes (Goodstein et al.,
2012), genome annotation and prediction of function stay challenging in plants, as
they are equally affected by rearrangements and reshuffling throughout evolution.
In addition, accurate prediction of the function of genes or proteins is hindered
by the lack of experimental data. This lack of experimental data arises from rapid
growth of sequenced genomes on the one side and slow progress of experimental val-
idation on the other side. As consequence, the quality of structural and functional
annotation is affected. The annotation quality and coverage varies considerably
between different plants. Model plants, such as Arabidopsis (Arabidopsis thaliana)
or rice (Oryza sativa), have a relatively high amount of experimental data and
consequently a high quality annotation. Non-model-plants are often lacking exper-
imental data (Yandell and Ence, 2012) (fig. 1.4). Including all species, ~98% of all
functional annotations are computationally inferred (du Plessis et al., 2011). Plants
have a similar percentage (~97%). After rice, which is the second-best annotated
plant with less than 2000 MF and BP annotations, annotation coverage is declining
fast. Thus, from a bioinformatics perspective, providing reliable function predic-
tions is paramount. One way to improve this situation is to incorporate network
data. Also here Arabidopsis is the most studied plant species, covering ~66% of
the proteins. Networks can be obtained from STRING (Franceschini et al., 2013),
BioGRID (Chatr-Aryamontri et al., 2013) and other sources (Brandao et al., 2009;
Arabidopsis Interactome Mapping Consortium, 2011; Mutwil et al., 2011; Orchard
et al., 2014). Other plant species are not covered extensively. STRING, as most
exhaustive resource, covers 11 plant species (fig. 1.5); nearly all plant network
resources are focused on Arabidopsis (Braun et al., 2013). This situation requires
generating network data from in-house experiments or public raw data archives,
such as the Sequence Read Archive (http://www.ncbi.nlm.nih.gov/sra). Alterna-
tively, it is feasible to use comparative approaches to transfer network data from
Arabidopsis (Mutwil et al., 2011). Most algorithms — also BMRF — need initial
training (seed) data to perform function prediction (Hastie et al., 2003; Kourm-
petis et al., 2011). Since experimentally verified seed data is sparse in nearly all
plants, we combined BMRF with a sequence-based function prediction algorithm.
This setup allowed us to create seed data for BMRF and perform network-based
function prediction, even though the species’ experimental annotation was sparse.
To be able to predict for sparsely annotated species is crucial when applied to
newly sequenced or non-model plants.

One reason for the sparse annotation in plants is that, in terms of plant
breeding, many plants are (commercially) interesting by themselves and not a
proxy for a central model organism. Examples are the vegetable crops tomato
(Solanum lycopersicum) and potato (Solanum tuberosum), the principal crops fea-
turing in this thesis. They belong to the Solanaceae or nightshade family, which
includes more than 3000 species (chapter 2). The family is economically one of the
most important, accounting for 10% of the worldwide gross production value of
crop plants in 2011 (http://faostat.fac.org). In terms of vegetable crops it ranks
number one, with tomato and potato as most abundant representatives, followed

11
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Figure 1.4: Overview of experimental annotation in selected species. Listed are all
experimental annotations (molecular function and biological process) of the GO-database.
Human and yeast (gray) are shown as reference.

by pepper and eggplant (Foolad, 2007; Xu et al., 2011). The Solanaceae show re-
markable adaptability to diverse climatic conditions, ranging from wet rainforests
to dry and arid environments, and exhibit a huge phenotypic diversity from tiny
annual herbs to large forest trees (Knapp, 2002). With the advent of whole genome
sequences of potato and tomato, bioinformatics allows comparison on different lev-
els, such as genome-wide comparisons, gene family analyses and protein function
assessments. Such comparisons are the prerequisite for exploring and exploiting
the differences and similarities of this plant family in future breeding.

Both plants are similar in genome size. Potato and tomato have a size of
approx. 850 megabases (Mb) and approx. 900 Mb, respectively (Xu et al., 2011;
Sato et al., 2012). They contain mostly large collinear regions, disrupted by several
large and multiple small inversions. Overall, they show a nucleotide divergence of
8% (Sato et al., 2012). Despite the small difference in genome sequence, both
plants show remarkably different phenotypic traits, such as fruit size and tuber
production (Xu et al., 2011; Sato et al., 2012). The genome sequences enable to
connect phenotypic properties back to the genome. Expansion of gene families
to introduce new protein functionality is a common phenomenon and Solanaceae
are no exception (Xu et al., 2011; Sato et al., 2012; Guo, 2013). For example,
homologs of the flowering-inducing gene FLOWERING LOCUS T evolved into
key players of tuber formation in potato (Abelenda et al., 2014). In this thesis
we investigate the expansion of the stress-related Snf2 gene family with its unique
development in tomato and potato (chapter 3). Due to their close relationship and
economic importance, tomato and potato provide a unique opportunity to study
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Figure 1.5: Number of plant-related interactions in the STRING database. In total,
11 plants are represented in STRING. Arabidopsis possesses the highest number of in-
teractions, covering approx. 66% of its proteome. Other plants have a significant lower
number of interactions in STRING.

evolutionary relationships of gene families and connections to (complex) traits.
In addition, both plants can function as models for flowering plants of the asterid
clade. The asterid clade represents 25% of all flowering plants (Xu et al., 2011) and
tomato and potato might provide a platform for further fundamental and applied
research in this clade.

Both plants have been annotated by the respective genome sequencing con-
sortia. In case of tomato, the iTAG (International Tomato Annotation Group)
used an in-house pipeline, incorporating ab initio, evidence-based and homology-
based methods. All results were integrated with Eugene (Foissac et al., 2008) and
manually curated, resulting in 34,727 gene models. Even though no comprehensive
evaluation is available, the structural iTAG annotation of tomato is considered to
be of high quality (Sato et al., 2012). Similar to iTAG, the PGSC (Potato Genome
Sequencing Consortium) used an in-house pipeline to annotate the potato genome.
The basic steps are the same as in the structural tomato annotation, but in terms
of complexity, with complexity translating to the number of tools, data sources
and internal validation used, the PGSC pipeline is much simpler. In total, 39,031
gene models were predicted. Due to inconsistencies between different pipelines,
the iTAG decided to redo the potato annotation, allowing a direct comparison of
potato, tomato and their structural annotations. The potato annotation conducted
by iTAG resulted in 35,004 gene models, 5027 models less than the PGSC anno-
tation. With Arabidopsis (TAIR10; Lamesch et al., 2012) as reference, the iTAG
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potato annotation matched 92% of the predicted gene models to Arabidopsis gene
models, whereas the PGSC annotation matched only 69% (Sato et al., 2012).
This result clearly indicates differences. However, the rate of correctly predicted
annotations can only be determined experimentally. Neither the iTAG potato an-
notation, nor the PGSC potato annotation has been evaluated in this respect.
Despite extensive research on tomato and potato, the amount of experimentally
verified functional annotation available in the UniProt-GOA database (Dimmer
et al., 2012) is negligible. Tomato has less than 500 and potato less than 100 anno-
tations, MF and BP aggregated. Computationally inferred functional annotations
are currently exclusively performed via sequence-based transfer of function. A sig-
nificant improvement can be expected by incorporating complementary data, such
as RNA-seq derived network data.

5 QOutline of this thesis

The research presented in this thesis aims to shape and develop the approaches
in plant bioinformatics for computational function prediction. In chapter 2 the
structural homology is presented in euchromatin regions of tomato, potato and
pepper with special attention to the long arm of chromosome 2. It shows that the
local gene vicinity is largely preserved, despite many small-scale synteny pertur-
bations. These results indicate a high frequency of chromosomal rearrangements
accompanying the evolution in the Solanum genus.

The adequate identification of chromosome organization is, among others,
required for the efficiency and success of introgressive hybridization breeding. In
the near future, technological advances in sequencing technology will allow se-
quencing large numbers of complex genomes relatively fast and cheaply. This will
undoubtedly speed up identification of compatible genomes for introgression breed-
ing, the rearrangement phylogeny within the Solanaceae, and reconstruction of the
ancestral Solanum karyotype. The results described in chapter 2 are a first step in
mining of structural genetic diversity towards the development of genome-based
breeding tools. Chapter 3 surveys the Snf2 gene family in the plant kingdom.
Members of the Snf2 gene family can affect (a)biotic stress response in plants
via chromatin remodeling. The Snf2 gene family shows high variation across the
plant genomes analyzed with unexpected expansions of the DRD1 subfamily in
the tomato genome. The results point towards a novel role of DRD1 members in
developmental or stress regulation in tomato. Chapter 4 explores a new way of
combining the protein function prediction methods BMRF and Argot2 to gain ad-
ditional performance in plants that are sparsely annotated. Newly sequenced and
non-model plants often lack experimental annotation, required to perform accurate
function predictions. The approach of combining a sequence- and network-based
method is able to supply and improve function predictions in such environments.
Chapter 5 shows that removing proteins from a protein-protein interaction network
can improve the prediction performance of the network-based function prediction
algorithm BMRF. Results show that highly connected (hub) proteins can impede
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function prediction performance. These proteins tend to connect functionally dif-
ferent network modules, which results in additional noise. As a consequence, the
removal of hub proteins increases the signal and improves function prediction per-
formance. Chapter 6 discusses the implications of this work on plant science and
outlines the perspective for future research.
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Chapter 2

Structural homology in the
Solanaceae: analysis of genomic
regions in support of synteny
studies in tomato, potato

and pepper

Abstract

We have analyzed the structural homology in euchromatin regions of tomato,
potato and pepper with special attention for the long arm of chromosome 2 (2L).
Molecular organization and collinear junctions were delineated using multi-color
BAC FISH analysis and comparative sequence alignment. We found large-scale
rearrangements including inversions and segmental translocations that were not
reported in previous comparative studies. Some of the structural rearrangements
are specific for the tomato clade, and differentiate tomato from potato, pepper
and other solanaceous species. Although local gene vicinity is largely preserved,
there are many small-scale synteny perturbations. Gene adjacency in the aligned
segments was frequently disrupted for 47% of the ortholog pairs as a result of gene
and LTR retrotransposon insertions, and occasionally by single gene inversions
and translocations. Our data also suggests that long distance intra-chromosomal
rearrangements and local gene rearrangements have evolved frequently during spe-
ciation in the Solanum genus, and that small changes are more prevalent than
large-scale differences. The occurrence of sonata and harbinger transposable ele-
ments and other repeats near or at junction breaks is considered in the light of
repeat-mediated rearrangements and a reconstruction scenario for an ancestral 2L
topology is discussed.

Bargstcn*, J. W., Peters™, S. A, Szinay, D., van de Belt, J., Visser, R. G. F., Bai, Y., and de
Jong, H. (2012). Plant Journal, 71(4):602-614. (*These authors contributed equally)



CHAPTER 2

1 Introduction

The Solanaceae or nightshade family is a large group of more than 3000 species
that includes tuber or fruit-bearing vegetables (tomato (Solanum lycopersicum),
potato (Solanum tuberosum), pepper ( Capsicum annuum) and eggplant /aubergine
(Solanum melongena)), and plants of horticultural (petunia (Petunia hybrida)) and
medicinal (tobacco (Nicotiana tabacum)) importance (Knapp, 2002; Sesso et al.,
2003). The family is economically the third most important, and ranks number
one in terms of vegetable crops (Foolad, 2007). The Solanaceae show remarkable
adaptability to diverse climatic conditions, ranging from wet rainforests to dry and
arid environments, and exhibit a huge phenotypic diversity from tiny annual herbs
to large forest trees (Knapp, 2002). In contrast, cultivated Solanum and Capsicum
crops have a strikingly narrowed genetic basis through domestication, resulting
in loss of desirable traits, including those that confer (a)biotic stress tolerance.
In addition, rapidly changing climate conditions and increasing competing claims
for arable lands will increase the demand for new varieties that tolerate harsh
environmental conditions, confer resistance against pathogens and at the same
time have better productivity and nutritional quality. The need to compensate for
such genetic losses requires introgression of alien chromatin from wild relatives to
the crops, a process referred to as introgressive hybridization. In general, the wild
relatives of solanaceous crops provide a gene pool that is sufficiently rich for crop
improvement. However, their use as donor in introgressive breeding is limited (Rick
et al., 1987; Singh, 2006; Bai and Lindhout, 2007). Crossing barriers and linkage
drag are well-known phenomena that limit the use of germplasm for introgressive
hybridization (Rieseberg and Willis, 2007; Bedinger et al., 2011).

The transfer of alien chromatin containing the genetic information for a
desirable trait depends on homeologous recombination between the donor chro-
mosome and its corresponding counterpart in the crop, which, amongst other
factors, is determined by their level of collinearity. Severe problems may occur
in those cases where the donor chromosome and its homeolog differ as a result of
large-scale rearrangements (inversions or translocations). Heterozygosity for such
rearrangements may lead to failure of synapsis and/or illegitimate crossovers at
meiosis. As a consequence, genes are unlikely to recombine, and so are transmitted
as a single locus, a phenomenon known as linkage drag. To facilitate identification
of compatible donor species or genotypes for error-free homeologous introgres-
sion of important agronomic traits such as (a)biotic stress tolerance, elucidating
the genome organization is imperative. This is usually accomplished by analyzing
collinearity, synteny and linkage at both the chromosome and gene level.

The synteny concept was introduced in 1971, and pertains to the preserved
co-location of homologous genes on chromosomes between species, irrespective of
genetic linkage and gene order (Ehrlich et al., 1997; Passarge et al., 1999). Con-
servation of both synteny and order of homologs determine conserved linkage of
genes. Both synteny and conserved linkage have been used to investigate solana-
ceous genome organization, gene diversification and evolutionary ancestry (Ku
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et al., 2000; Fulton, 2002; Wu et al., 2006; Wang et al., 2008). The identification
of ancestral relationships between homologous genes and their distinction into or-
thologs and paralogs has become more feasible with the advent of high-throughput
sequencing that facilitates comparisons of entire genomes. Until now, sequence
comparisons for conserved syntenic segments in Solanum have mainly been ob-
tained for relatively small orthologous regions. In general, the order and sequence
of orthologs was found to be conserved, despite a few small-scale differences and
positive gene selections (Doganlar et al., 2002b; Wang et al., 2008).

Analysis of chromosome structure in Solanaceae has been based on several
lines of research. For example, light microscopy observations on pachytene chromo-
somes of F1 hybrids showed normal synapsis along the chromosomes. Furthermore,
linkage maps of intra- and inter-specific hybrids were found to be largely collinear
(Pertuzé et al., 2002; Chetelat and Ji, 2007; Moyle, 2008). Both similarity in chro-
mosome morphology and marker collinearity supported the notion that Solanum
species have evolved primarily by genic change rather than by large-scale chromo-
somal rearrangements. Nonetheless, genetic linkage analyses indicated that tomato
and potato are differentiated by a series of whole-arm inversions of chromosomes
5, 9, 10, 11 and 12 (Bonierbale et al., 1988; Tanksley et al., 1988; Livingstone
et al., 1999; Doganlar et al., 2002a; Pertuzé et al., 2002). Furthermore, electron
microscopy studies on somatic hybrids of tomato and potato (de Jong et al., 1993)
and F; hybrids from inter-specific crosses revealed substantial changes in chro-
mosome structure among Solanum species (Anderson et al., 2010). Most of these
structural changes, however, were found in the heterochromatin, with compara-
tively few genes and low recombination, and thus would have little effect on the
collinearity of linkage maps (Anderson et al., 2010).

Although genetic mapping studies provided valuable starting points for un-
raveling plant genome organization, they are inaccurate in regions where crossover
recombination is suppressed or even absent, as in the distal heterochromatin and
the large pericentromere regions, for example. Furthermore, there are insufficient
DNA polymorphisms for simple markers that are locus-specific across species, caus-
ing markerless gaps in linkage maps that could leave chromosome rearrangements
undetected. Such problems were recognized within the framework of the tomato
genome sequencing project (Szinay et al., 2008; Peters et al., 2009). For example,
integrated mapping revealed genetic intervals comprising hundreds of tomato genes
in euchromatic regions with a marker coverage insufficient to support microsyn-
teny analysis. Some studies used a sequence-based comparison for microsyntenic
analysis in Solanaceae (Fulton, 2002; Van der Hoeven, 2002; Datema et al., 2008;
Wang et al., 2008), but genome-wide comparative sequence analysis is still limited
for Solanum, as comparable sequence clades have not yet emerged. Alternatively,
genome-wide cross-species fluorescence in situ hybridization (FISH) has provided
a foundation for comprehensive comparative maps, as well as rapid and reliable de-
tection of genetic elements that are associated with traits of interest. For example,
FISH has been used to analyze the organization of the short arm of chromosome 6
(6S) in tomato and potato, which contains the Mi resistance homolog cluster. An
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additional inversion was revealed on 6S (Iovene et al., 2008; Tang et al., 2008b)
that was not reported in synteny studies with molecular markers (Tanksley et al.,
1992; Grube et al., 2000), probably due to lack of marker coverage and suppression
of recombination (Liharska et al., 1996; Bai et al., 2004; Seah et al., 2004).

Recently, the complete genome sequences of both tomato and potato have
become available, and this allowed us to take advantage of a combined cytogenetic-
based macrosyntenic approach and a comparative sequence-based microsyntenic
approach. Here, we address a number of issues including content and gene orga-
nization in Solanum chromosomes. In addition, we present a detailed analysis of
chromosome rearrangements in tomato (S. lycopersicum), potato (S. tuberosum)
and pepper (Capsicum annuum), with special attention to regions containing stress
tolerance and disease resistance homologs, and discuss the rearrangements in the
light of chromosome evolution.

2 Materials and Methods

2.1 Scaffold selection

S. lycopersicum Heinz 1706 (build 2.40) and S. tuberosum DM scaffolds were ob-
tained from ftp://ftp.solgenomics.net/tomato_genome/wgs/assembly and http:
//potatogenomics.plantbiology.msu.edu, respectively. The scaffolds of tomato and
potato were aligned against genetic and physical maps from the Sol Genomics
Network (http://solgenomics.net) to verify the chromosomal location. Genome se-
quences were aligned using MUMmer 3.22 (http://mummer.sourceforge.net) with
the tomato scaffold as a reference. Subsequently, the coords file output generated
by the MUMmer script »NUCmer« was converted into ClustalW format and used
as input for the generic synteny browser GBrowse syn (http://gmod.org/wiki/
Synteny) for visualization and further analysis. Tomato Heinz 1706 BACs and
potato BAC sequences from the RH clone library were aligned to scaffolds using
blastn.

2.2 BAC selection, growth and DNA preparation

For solanaceous species-derived stress tolerance genes, a genomic location was de-
termined by best blastn hits against tomato scaffolds from the Sol Genomics Net-
work (SGN; http://solgenomics.net). Translated coding regions from non-solanaceous
species-derived stress tolerance genes were used in a tblastx screen against tomato
unigene sequences. Unigenes were then used for a blastn screen against tomato
scaffolds to determine sequence coordinates. Subsequently, BAC clones contain-
ing stress tolerance gene homologs were identified by blastn of a scaffold sequence
interval against a tomato BAC end sequence database, and linked to the EX-
PEN2000 genetic map by screening the genomic intervals against the genetic
marker database. Subsequently, BAC clones of tomato cv. Heinz 1706 HindIII,
EcoRI and Mbol libraries were grown, and BAC DNA was isolated as described
previously (Peters et al., 2009).
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2.3 Chromosome preparations

All FISH experiments were performed on tomato cv. Heinz 1706 (2n = 2z = 24).
Pachytene preparations from young anthers containing pollen mother cells and
spreads of extended DNA fibers from young leaves were made as described by
Zhong et al. (1996) and Budiman et al. (2004).

2.4 Fluorescence in situ hybridization (FISH)

Two-color and multi-color FISH of BAC clones to pachytene chromosomes were
performed as described by Zhong et al. (1996). Slides were examined under an
Axioplan 2 imaging photomicroscope (Zeiss, Jena, Germany) equipped with epi-
fluorescence illumination and small band filter sets for DAPI (4’,6-diamino-2-
phenylindole) and for FITC (fluorescein-5-isothiocyanate), Cy3 (cyanine 3), Cy5
(cyanine 5), DEAC (7-diethylaminocoumarin-3-carboxylic acid) and Cy3.5 (cya-
nine 3.5) fluorescence. Capturing of selected images and image processing were
performed as previously described (Szinay et al., 2008).

2.5 Sequence annotation

Interspersed repeats were identified through similarity searches to the Magnolio-
phyta section of the Repbase repeat database (release 2008-08-01) (Jurka et al.,
2005) and the Institute for Genomic Research Lycopersicon repeats version 3.1
and Solanaceae repeats version 3.1 (currently available via http://plantrepeats.
plantbiology.msu.edu) using RepeatMasker 3.2.5 (http://www.repeatmasker.org)
and cross_match 0.990319 (http://www.phrap.org). In addition, LTR retrotrans-
posons were predicted ab initio using LTR Finder (Xu and Wang, 2007; http:
//tlife.fudan.edu.cn/ltr_ finder). Ab initio gene prediction on the repeat masked
sequences was performed using Genscan (Burge and Karlin, 1997) using Arabidop-
sis thaliana gene models. Alignments of tomato and potato ESTs and genetic
markers were generated using blastn 2.2.17 (Altschul et al., 1997). Tomato and
potato EST sequences and marker sequences were downloaded from the Sol Ge-
nomics Network (http://solgenomics.net).

2.6 Orthology analysis

For ortholog detection, tomato ITAG annotation 2.31 (http://solgenomics.net/
gbrowse/bin/gbrowse/ITAG1_genomic) and potato PGSC annotation 3.4 (Xu
et al., 2011) were used to obtain the sequences of the predicted proteins. In each
case, only the longest transcripts were taken into consideration. Reciprocal best
hits were obtained using blastp (Altschul et al., 1997) and results were clustered
into orthologous groups by InParanoid version 4.1 (Remm et al., 2001) with a score
cut-off of 40. Further processing of annotation data to fit the coordinates on the
selected segment was performed using custom Perl and R scripts in combination
with BioPerl (http://www.bioperl.org/wiki/Main_ Page).
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The coordinates and identity of ortholog group members, together with the
mapped positions of BAC sequences, LTR retrotransposons and unigenes and co-
ordinates for mapped annotated proteins were subsequently stored in a gff format
for visualization of the local gene repertoire with SynBrowse (Pan et al., 2005).

The predicted orthologs were clustered into ortholog groups and subse-
quently classified into genes with conserved or disrupted linkage based on the
linear order of orthologs.

3 Results

3.1 Cytogenetic macrosynteny between tomato, potato and
pepper

Nucleotide sequences and translations from annotated coding regions of 32 genes
that have been implicated in stress tolerance (Jenks et al., 2007) were collected
from the Genbank and Refseq sequence databases (http://www.ncbi.nlm.nih.gov),
and were used for blastn- or tblastx-based similarity searches. We identified 19
stress tolerance gene homologs in 19 tomato BACs, and verified the cytogenetic
mapping position on tomato and potato chromosome 2, 6, 10 and 11 pachytene
complements using BAC FISH. Eight BACs, of which six contain a stress tolerance
homolog, display a single clear fluorescent signal on chromosome 2. This chromo-
some can easily be distinguished from the other chromosomes by its acocentric
structure and the large nucleolar organizing region. Previously, cytogenetic stud-
ies of tomato pachytene chromosomes revealed long continuous stretches of less
condensed euchromatin in both chromosome arms, flanked by highly condensed
heterochromatin at the telomere ends and the centromeres (Ganal et al., 1991;
Jong et al., 2000; Chang et al., 2008). Based on these morphological properties,
the foci observed were in the euchromatic part on the long arm of tomato chromo-
some 2 (2L) (fig. 2.1). Genetically, these BACs have been mapped at an interval
between 82 and 143 ¢cM based on blastn hits to SGN EXPEN2000 markers (http:
//solgenomics.net/cview /map.pl?map_ version_id=52). The genetic map order of
all BACs is consistent with the linear cytogenetic mapping order, except for
H14606, which appears to be inverted (figs. 2.1 and 2.5S1). Using common markers,
we mapped the tomato BACs to the euchromatic portion of potato 2L (see below)
in an interval between 33 and 50 ¢cM on the potato TXB genetic map (Koo et al.,
2008). Strikingly, the cytogenetic mapping order on potato and tomato pachytene
is clearly different, suggesting multiple rearranged segments. On potato and pep-
per chromosome 2L, the BAC FISH mapping order appears collinear (fig. 2.1).
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Figure 2.1: Comparative FISH analysis of tomato BACs on tomato, potato and pep-
per 2L, 6S, 10L and 11L. Identifiers for tomato BACs are indicated on the right of
each pachytene chromosome. White arrows indicate the positions of Mi, L and TSW
loci. Corresponding cytogenetic mapping positions of HindIII (H), EcoRI (E) and Mbol
(M) tomato BACs, and telomere positions on tomato, potato and pepper pachytenes
are shown by coloured connecting lines and white connecting lines, respectively. The
positions of SGN markers from the tomato EXPEN2000, potato TXB1992 and pepper
AC99 genetic maps (http://solgenomics.net/cview/map.pl?map_ id=11) associated with
the tomato BACs are indicated (cM).
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In addition to 2L, cross-species FISH analysis previously revealed major
differences in chromosome organization for 6S, including the Mi disease resistance
homolog cluster. Mapping results in the 1-10 cM interval were interpreted as a
large paracentric inversion that covers the 4.5 Mb euchromatin part with break-
points close to the top arm telomere and at the border of the pericentromeric
heterochromatin. The observations also suggested rearrangements in the middle
part of the short arm. However, the precise differences in chromosomal organiza-
tion were not resolved at the time (Tang et al., 2008b; Peters et al., 2009). Here
we aim to further elucidate the topology of 6S. A distal inversion was detected in
pepper and potato 6S compared to tomato. In addition, one BAC displayed two
foci on pepper 6S, which could be due to a duplicated segment or a breakpoint in
pepper, or a deletion in potato (fig. 2.1).

Differences in the mapping order of markers on tomato, potato and pep-
per genetic maps also indicate rearrangements near the TSW and L loci. These
loci reside on the long arm of chromosomes 10 (10L) and 11 (11L), respectively,
and have been implicated in tomato spotted wilt virus and tobacco mosaic virus
resistance in Capsicum spp. (Jahn et al., 2000; Yang et al., 2009). We selected
three anchored tomato BACs in the 52—62 c¢M interval and the 74-90 cM interval
on the EXPEN2000 genetic map for FISH analysis (figs. 2.52 and 2.S3). These
tomato BACs each display a focus in the euchromatic portion of tomato, potato
and pepper pachytene chromosomes, and the order of foci on potato and pepper
is collinear. However, the order of foci is inverted on tomato 10L, indicating re-
arrangements in this part of the tomato genome. On tomato and potato 11L the
order is collinear, but cytogenetic mapping indicates a translocated segment with a
reversed orientation in 11L of pepper (fig. 2.1), in agreement with the comparative
mapping in the 57-115 ¢M interval (Yang et al., 2009) (fig. 2.S3).

3.2 Comparative sequence alignment

To further delineate differences in the chromosomal organization, we selected
tomato scaffold sequences based on blastn hits using tomato BAC ends and ge-
netic marker sequences (http://solgenomics.net). On 2L, the 82-143 cM interval
corresponds to a sequence of approx. 7 Mb from tomato scaffold SL.2.40sc03665
(http://solgenomics.net /sequencing/agp.pl), which spans H159F19 and H072B02
on the FISH map (fig. 2.1). Tomato BAC ends and markers anchoring BACs
to the EXPEN2000 map show blastn matches to five potato scaffolds (DM244,
DM441, DM1213, DM12 and DM4) from Solanum tuberosum group Phureja DM1-
3 516 R44 (hereafter referred to as S. tuberosum DM), which have a total length
of approx. 7 Mb. Both DM scaffold order and orientation on the potato 2L FISH
map are consistent with the genetic marker order, and the »accessioned golden
path« (AGP) map for potato chromosome 2 (Xu et al., 2011). Subsequently, a
comparative alignment revealed the coordinates of the junction breaks of translo-
cated segments for scaffold DM4, DM12 and DM244. In addition, two segments
of approx. 3 Mb and 980 kb originating from scaffold DM4, two DM12 segments
of 300 and 690 kb, and a small 20 kb segment of DM1213 align in the opposite
orientation (fig. 2.2), which suggests inversions have occurred.
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The identity plot also displays multiple rearrangements between corre-
sponding segments of tomato and potato 6S, 10L and 11L (fig. 2.2b—d; table 2.51).
We observed large inversions for practically the entire 4.5 Mb of tomato 6S, with
several segments that appear translocated compared to potato 6S. In addition, the
first 0.5 Mb just downstream of the tomato 6S telomere position appears almost
entirely missing in potato, leaving only a small collinear fragment of 60 kb. For a
2.9 Mb segment from tomato 10L, we found two collinear fragments of 375 kb and
1.35 Mb. Two fragments of approx. 470 and 710 kb aligned in opposite orientation
to fragments from a 7.5 Mb potato segment, of which 4.14 Mb did not align. A
comparative alignment of a 1.9 Mb tomato 11L segment to a corresponding 2.5 Mb
potato segment showed three inversions of 144, 295 and 190 kb, and deletions of
approx. 230, 140 and 90 kb. Although cytogenetic mapping did not reveal the
inversions in tomato 11L, the FISH mapping order is explained by the blastn hit
positions (fig. 2.2d). Because genomic sequences are currently lacking for pepper,
we cannot confirm the structural rearrangements between tomato and pepper 6S,
10L and 11L by sequence comparison.

3.3 Topology of tomato and potato 2L segments

To exclude the possibility that the observed collinearity breaks in the comparative
sequence alignment arose from aberrantly assembled sequences, we validated the
borders of collinear scaffold segments by comparative FISH analysis using BACs
that span a junction break. The FISH mapping shows single clear foci for the
junction break BACs on tomato 2L (fig. 2.3). The mapping order is in agreement
with the order and BLAST position of BACs on scaffold 3665, and thus confirms
correct assembly of the 7 Mb region. Remarkably, several tomato BACs that span
alignment breaks displayed two FISH signals on 2L of both potato accessions G254
and RH89039 (fig. 2.3, lanes 1, 3, 5 and 7). In addition, the FISH map position
of H138J12 is just north of E129C17 (fig. 2.3, lanes 3 and 4), in agreement with
the inverted orientation of a 300 kb DM12 segment. H028F18 co-localizes with
HO015P22 on potato 2L from accession RH8903916 (fig. 2.3, lane 3), in contrast
to two distinct foci on tomato (fig. 2.3, lane 4). This is in agreement with two
overlapping blastn hits on DM4 and two hits on scaffold SL.2.40sc03665, which
map several megabases apart. Furthermore, M046B12 and E129C17 both show a
single focus on tomato and potato (fig. 2.3, lanes 3, 4, 7 and 8), and both HO15P22
and HO28F 18 co-localize on potato pachytene (fig. 2.3, lane 3). Apparently, a large
3 Mb segment from DM4 has been translocated and has a reversed orientation in
tomato. HO88KO05 and H040C22/H138P10 each display a single focus in a similar
order on both tomato and potato pachytene (fig. 2.3, lanes 5 and 6). This confirms
the orientation and position of DM441 and a translocated 690 kb segment from
DM12. The two signals for H160D06 (fig. 2.3, lanes 5 and 7) are in agreement
with BLAST hits to DM244 and DM4 sequences. For E022J22, we also observed
one signal on tomato (fig. 2.3, lane 2) and two foci on potato (fig. 2.3, lanes 1
and 5), consistent with two BLAST hits to DM244 and DM12, which are 1 Mb
apart on the physical map. The corresponding cytogenetic spacing between two
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Figure 2.2: Identity plots of S. lycopersicum and S. tuberosum group Phureja DM1-
3 516 R44 segments of 2L, 6S, 10L and 11L. Sequences aligned in forward and reversed
orientation are represented by red and blue lines, respectively. Tomato and potato chro-
mosome labels are indicated on the z and y axes. Segment positions aligning to BAC
H303G16, H150M12 and E043B08 are marked in the bottom right plot by arrows (a) to

(c), respectively.
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foci from E022J22 appeared to be comparable to that observed between H160D06
and E022J22 (fig. 2.3, lane 5). This result adds to the notion that 660 and 386 kb
segments from DM244 have an inverted orientation, of which the 660 kb segment
is also translocated in tomato. Furthermore, mapping confirms that potato acces-
sions G254 and RH890391 share a similar 2L topology with potato DM. Based on
these results, we reconstructed the tomato and potato chromosomal organization
(fig. 2.4).

3.4 Orthologs on tomato and potato 2L and linkage
conservation

The recent tomato and potato genome sequencing efforts and available genetic map
information enable analysis of the gene repertoire and relative order and orthol-
ogy detection, a prerequisite to investigate the extent of conserved linked genes
in repositioned homeologous segments. In this respect, Bonierbale et al. (1988)
have demonstrated that cDNA markers are largely collinear along the tomato and
potato chromosomes. In particular, the segments from tomato and potato 2L have
several EST-derived genetic markers in common, and thus appear to be conserved
syntenic (fig. 2.4). To assess the conserved linkage, we used the complete set of
ITAG2 and PGSC release 3.4 annotated protein sequences (see section 2) to iden-
tify and map the main orthologs in syntenic tomato and potato 2L segments,
respectively.

Ortholog detection

The syntenic 2L segments contain 893 predicted genes in tomato and 820 in
potato, respectively. Use of InParanoid (Remm et al., 2001) identified 664 ortholog
groups, of which 623 comprise an ortholog pair localized in corresponding collinear
segments, consistent with a conserved syntenic nature. For 25 ortholog groups,
14 tomato and 11 potato ortholog genes mapped outside homeologous segments
(table 2.52). Within the 623 ortholog groups, we detected 721 tomato genes and
679 potato genes, apparently indicating that gene duplications have occurred. The
mean tomato and potato gene copy (paralog) numbers for the 623 ortholog groups
are 1.16 and 1.09, respectively (table 2.52). There are 36 ortholog groups with
more than two members, of which 12 groups have multiple tomato paralogs, 16
groups have multiple potato orthologs, and eight groups have multiple tomato
and potato paralogs. In two ortholog groups, tomato genes Solyc02g090350 and
Solyc02g085990 have adjacent paralogs. Thus, although it appears that tomato
and potato share a comparable basic set of genes overall, the order and number of
gene copies is substantially different.
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Figure 2.3: FISH analysis of collinearity breaks between tomato and potato 2L. Tomato
BACs were hybridized on pachytene complements from tomato Heinz 1706 (lanes 2, 4,
6 and 8) and pachytenes from potato G254 (lane 1) and RH8903916 (lanes 3, 5 and 7).
Corresponding cytogenetic mapping positions of HindIII (H), EcoRI (E) and Mbol (M)
tomato BACs on tomato and potato pachytenes are shown by coloured connecting lines.
Telomere positions on the 2L are indicated by white connecting lines.

Gene adjacency, orientation and unclustered genes

We found 335 ortholog pairs that have a conserved linkage, and 288 pairs
that have disrupted gene adjacency. For example, comparison of tomato genes
with their potato orthologs just downstream of the F18 junction in scaffold DM12
showed that local gene vicinities are preserved, but gene adjacency is disrupted.
Tomato and potato orthologs were frequently interrupted by putative LTR retro-
transposons (fig. 2.54). In total, we predicted 28 LTRs in tomato scaffold 3665
and 56 LTRs in the collinear potato DM scaffolds.

Of the identified orthologs, eight orthologous gene pairs show irregular posi-
tioning compared to the layout of the collinear segments (fig. 2.5; table 2.53). The
orthologs corresponding to the gene models located on potato scaffold DM1213
are shifted by 1.23 Mb upstream and inverted in tomato (fig. 2.5, genes e and f;
fig. 2.2). Here, the provisional state of the current potato scaffold order appears
to be the most straightforward explanation for this aberrant position, although a
biological rearrangement cannot be excluded. In tomato, this domain contains two
AP2-domain transcription factors. ITAG RepeatMasker annotation (see section 2)
shows that these AP2 homologs are flanked by copies of LTRs that possibly orig-
inate from the same transposon. Furthermore, there are three orthologous gene
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Figure 2.4: Comparative map for tomato and potato 2L. Chromosome 2 markers in
tomato and potato scaffolds are indicated on the top and bottom bars with ¢cM positions
from the tomato EXPEN2000 and potato TXB1992 genetic maps. The order and relative
positions of markers without a genetic position are derived from blastn hits to potato
scaffolds. Aligned segments from potato DM scaffolds to tomato scaffold SL2.40sc03665
are represented by colored rectangles. Syntenic blocks are represented by colored polygons
in the middle section, and correspond to the position and orientation of rearranged potato
segments. The relative positions of tomato BACs flanking or spanning collinearity breaks
are labeled with their identifier above each DM segment. The relative positions and order
of the tomato BACs on the tomato and potato FISH map are indicated by corresponding
colored dots. Some BACs spanning a collinearity break have one corresponding position
on the tomato FISH map and two corresponding positions on the potato FISH map.

pairs that remain as relicts of the proposed splitting of scaffold DM244 into sepa-
rate contigs (fig. 2.5, genes b, ¢ and d). In addition, we found two pairs of orthologs
with an inverted orientation to the syntenic segment (fig. 2.5, genes a and h), and
one ortholog pair that shows transposition of the tomato ortholog to a region
approx. 2.8 Mb distal of its expected position (fig. 2.5, gene g). A substantial pro-
portion of the 241 and 173 putative genes, respectively, in the tomato and potato
aligned segments remained unclustered (fig. 2.5), and probably are the result of
stringent clustering cut-off values or aberrantly predicted genes in the gene anno-
tations, or they may be species-specific. Furthermore, some unclustered genes are
probably false negatives, taking into account that InParanoid has a false-negative
rate of approx. 3% when omitting the use of an outgroup (Remm et al., 2001).
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Figure 2.5: Orthologous gene matches for potato versus tomato. The first 6.7 Mb of
tomato scaffold SL2.40sc03665 and potato scaffolds DM4 (green), DM12 (purple), DM244
(red), DM441 (yellow) and DM1213 (blue) are shown. The midpoint of a gene model is
represented by a dot. An orthologous gene pair is indicated by a dot in the first quadrant,
unclustered genes are shown at —100 000, paralogs are shown at —50 000, and clustered
genes without a matching counterpart in the selected segment are shown at —500 000
along the corresponding axis. Ortholog pairs with an irregular position are indicated by
arrows (a) to (h).

3.5 A rearrangement pathway model

There is compelling evidence that recombination plays a much larger role in the
evolution of plant genomes than previously appreciated. Recombination in plants
is highly variable, and includes (¢) meiotic recombination between homologous
chromosomes, (i) intra-strand crossing over between direct and inverted repeats,
(é17) unequal crossing-over between misaligned repeats on homologous chromo-
somes, and (4v) illegitimate or non-homologous recombination (Gaut et al., 2007).
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Although the mechanisms that underlie complex genome rearrangements in plants
are quite diverse and not fully understood, there is accumulating evidence that
links rearrangement breakpoints and repeats (Coghlan et al., 2005). Thus, re-
arrangements in tomato and potato 2L may be explained in conformance with
the type and location of repeats. We detected similarity to class I and II trans-
posons in 20 kb bins near the synteny breaks, in particular sonata, harbinger,
Long Interspersed Elements (LINEs), Short Interspersed Elements (SINEs), un-
known retrotransposons and telomere-like related sequences (figs. 2.S5 and 2.S6).
Furthermore, comparative sequence analysis revealed two copies of a 4.5 kb in-
verted repeat on tomato 2L flanking the junction between the 690 and 978 kb
syntenic blocks, and spanning the synteny junction between the 308 and 662 kb
segments. Another repeat of 267 bp is located near the 386-3030 kb segment
junction and the 308-662 kb segment junction (fig. 2.57). We did not detect sim-
ilarity to known transposable elements (TEs), and therefore these repeats are not
likely to be of transposon origin. Currently, we do not have direct evidence for
their involvement in the rearrangements, but, taking into account their location
near synteny breaks, we hypothesize that transposon element/repeat-mediated
recombination may be explanatory for the 2L rearrangements as follows. We as-
sume the existence of unichromosomal breakpoints, as we have not found any
7 Mb segmental duplication in other parts of the tomato genome, and according
to Pevzner and Tesler (2003), that the unichromosomal breakpoints are related
and inter-dependent. Furthermore, the 2L rearrangements are probably tomato
lineage-specific. This notion is substantiated by several genome mapping studies
(Bonierbale et al., 1988; Tanksley et al., 1988, 1992; Livingstone et al., 1999; Tho-
rup et al., 2000; Doganlar et al., 2002a; Pertuzé et al., 2002; Ashrafi et al., 2009)
and the collinear BAC FISH maps for 2L of S. lycopersicum, S. lycopersicoides,
S. pennellii and S. chilense (H.d.J., unpublished results). Therefore, we assumed
the potato and pepper organization to be ancestral, and thus the rearrangements
needed to transform the tomato into potato chromosome topology can be used to
reconstruct an ancestral karyotype. Taking this evolution direction into account,
we propose a rearrangement pathway model in which intra-strand crossing-over
and ectopic recombination give rise to segmental rearrangements (fig. 2.6). First,
two segments from DM244 become inverted by ectopic recombination mediated
by copies of the same transposon elements that are positioned near the synteny
breaks, or by non-homologous recombination. After the second reversal, a chro-
matid strand folds back, generating local pairing of the 276 bp inverted repeats,
subsequent to which, inter-chromatid crossing-over occurs, leading to a third in-
version. After breakage and fusion, this generates an intermediate configuration
in which the 4.5 kb repeat is inverted. The 4.5 kb inverted repeat element then
mediates a second intra-strand crossing-over event, resulting in a fourth inver-
sion. Indeed, when using GRIMM (Tesler, 2002), a single and most parsimonious
scenario was predicted, which consisted of a trajectory involving four recombi-
nation events (table 2.54) that resembled the conversion steps presented in the
rearrangement model proposed above.
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Figure 2.6: Proposed rearrangement scenario involving four structural conversions given
the initial potato order (upper panel) and final tomato order (bottom panel) of 2L seg-
ments. Positions of intra-strand crossing-overs between segments are marked » X«. Arrows
indicate the relative order and orientation of 2L, segments.

4 Discussion

4.1 Unravelling structural differences in Solanum and
Capsicum

In recent decades, marker-based mapping studies provided broad knowledge of the
structural and molecular organization of various plant genomes, including tomato
and potato. It is apparent that plant genomes share extensive conserved linkage
despite their diversity in size and complexity (Bonierbale et al., 1988; Tanksley
et al., 1992; Bennetzen, 2000a). These studies also indicated large-scale differences
in genomic organization, most of which were found in heterochromatic domains.
Nevertheless, comparative maps have limitations that arise from low marker den-
sity and low placement accuracy that complicate local resolution of chromosomal
organization. Tang et al. (2008b) and Peters et al. (2009) used BAC FISH painting
to unravel complex rearrangements in euchromatin regions and elucidated discrep-
ancies between genetic and physical maps. In this paper, we provide more detailed
mapping at the sequence level in order to identify the coordinates of collinear seg-
ments and subsequent selection of BAC targets to validate the collinearity breaks.
We have shown that large-scale structural differences in Solanum and Capsicum
are not only confined to heterochromatin portions, but frequently occurred in the
euchromatic portion of 2L, 6S, 10L and 11L. Thus, although genetic maps and
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comparative sequence analysis each have limitations in power and resolution, their
combined usage is indispensable for unsurpassed knowledge of chromosome orga-
nization at the structural and sequence level.

4.2 Large-scale rearrangements

Comparative sequence alignment indicated the location of collinearity breaks be-
tween tomato and potato DM 2L. Using BACs that span junction breaks, FISH
revealed double signals marking the borders of collinear segments in potato acces-
sions G254 and RH890316. In total, six large-scale rearrangements were discovered
on a 7 Mb euchromatic region of 2L between tomato cv. Heinz 1706 and potato
G254 and RH8903916. Although chromosome 2 markers TG34 and TG48 in the
89-143 c¢M intervals show an inverted order (Tanksley et al., 1992), these structural
differences between tomato and potato were not apparent from linkage maps.

Linkage maps between tomato and several wild relatives show a similar or-
der of 2L genetic markers (Tanksley et al., 1992; Fulton et al., 1997; Pertuzé et al.,
2002; Ashrafi et al., 2009; http://solgenomics.net), but they appear to be inverted
for pepper, eggplant/aubergine (Livingstone et al., 1999; Thorup et al., 2000; Do-
ganlar et al., 2002a; http://solgenomics.net) and potato (this paper). Furthermore,
potato, pepper and eggplant share extensive marker collinearity in the homeolo-
gous 2L segments. Taken together, these results suggest that the rearrangements
in 2L are specific for the tomato clade, and thus occurred after the split from the
common ancestor of tomato and potato.

A tomato-specific rearrangement was also reported for chromosome 10, for
which the tomato, potato and pepper homeologs apparently differ by a paracen-
tric inversion (Tanksley et al., 1988, 1992; Livingstone et al., 1999). Comparative
linkage map studies in sister species of tomato, S. lycopersicoides and S. sitiens
(Pertuzé et al., 2002) showed a 10L configuration that was similar to that of potato
and pepper (Capsicum), and this provided further evidence for the notion that the
paracentric inversion was already fixed in the common ancestor for the tomato lin-
eage. The FISH mapping presented here confirms two inversions in tomato 10L
compared to the potato and pepper chromosome organization, and is consistent
with the tomato lineage-specific nature of the rearrangements.

The structural organization appears less similar in tomato and potato 11L.
The comparative sequence alignment indicates multiple breakpoints corresponding
to three inversions and three deletions. Although an accurate sequence alignment
for pepper 11L is currently lacking, cytogenetic mapping revealed at least one
translocated segment with a reversed orientation. By comparing tomato and pep-
per genetic maps, a minimum of 22—-32 breakages of tomato chromosomes would be
necessary to transform the order and position of tomato genes to that observed in
pepper (Tanksley et al., 1988; Livingstone et al., 1999). We have not investigated
all putative chromosome rearrangements, and it is conceivable the number of re-
arrangements is an under-estimate and a consequence of a low density of genetic
markers. This notion is supported by our observation that the previously reported
hidden inversion for the 4.5 Mb short arm of chromosome 6 (Tang et al., 2008b)
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actually appears more complex. A comparative sequence alignment revealed multi-
ple reversals, translocated segments and a deletion in potato 6S. From the present
results and those of previous studies, we propose a genome landscape in which evo-
lution on the structural level for the majority of the 12 chromosomes in Solanaceae
was far more dynamic than currently appreciated.

4.3 Chromosomal rearrangements and reproductive
isolation

The role of the large structural rearrangements in 2L with respect to inter-generic
and intra-generic reproductive isolation and speciation of Solanaceae, remains un-
clear. Rearrangements can impede proper pairing of homeologous chromosomes
and reduce recombination, and may also cause decreased fitness or even sterility
(Noor et al., 2001; Livingstone and Rieseberg, 2004; Rieseberg and Willis, 2007;
Bedinger et al., 2011). For example, inter-specific hybrids between S. lycopersicum
and S. pennellii are highly fertile, and light microscopy analysis demonstrated near
normal levels of meiotic pairing and crossing-over (Tanksley et al., 1992). However,
high-resolution electron microscopic analysis of chromosomes at pachytene showed
frequent unusual synaptic configurations (Anderson et al., 2010). The latter ob-
servation might seem in contradiction with fertility and the unaffected recombina-
tion between tomato and S. pennellii. However, it is possible that relatively small
structural differences between homeologous chromosomes may be tolerated, but
relatively large rearrangements may disrupt meiotic synapsis or recombination and
may result in infertility. For example, inter-specific hybrids between S. lycopersi-
coides and S. sitiens are fertile and show recombination rates similar to tomato
(Pertuzé et al., 2002). In contrast, inter-generic hybrids of S. lycopersicum with
S. lycopersicoides or S. sitiens are sterile and show genome-wide suppressed recom-
bination (Chetelat et al., 1997). Moreover, recombination is completely abolished
for 10L, which may be explained by a large paracentric inversion between the L-
type (Lycopersicon spp.) and S-type (S. lycopersicoides and S. sitiens) genomes
(Pertuzé et al., 2002).

Although we have not investigated the molecular nature of inter-specific
barriers between tomato and potato, the rearrangements presented here may very
well impede proper synapsis. In line with this are results obtained from somatic
hybrids of tomato and potato, in which irregular synapsis was also frequently ob-
served (de Jong et al., 1993). The latter may perhaps involve absent, repositioned
or protected blocks of genes that suppress homeologous pairing (Bedinger et al.,
2011). In this respect, a phenomenon known as transmission ratio distortion is of-
ten observed in inter-specific crosses between tomato and wild relatives. Possibly,
selection against particular allelic combinations that are associated with »trans-
mission ratio distortion« loci underlies hybrid incompatibility (Moyle and Graham,
2006). For example, strong reproductive barriers have been observed between S. ly-
copersicum and the tomato-like nightshades S. ochrantum and S. juglandifolium,
which have been placed phylogenetically and morphologically in an intermedi-
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ate position between tomato and potato (Spooner et al., 2005). Remarkably, we
physically mapped markers associated with distortion loci trd2.2, sd10.1, sd10.2,
and trd11.1 from Solanum species (Pertuzé et al., 2002; Albrecht and Chetelat,
2009) to the rearranged segments in 2L, 10L and 11L discussed here (figs. 2.51
to 2.S3), suggesting a relationship between hybrid incompatibility, transmission
ratio distortion and large rearrangements.

4.4 Small-scale rearrangements and changes in gene
repertoire

Overall, tomato and potato have a 7% difference in gene copy number in rear-
ranged 2L segments (table 2.52). Studies on gene repertoire and gene order in
tomato and pepper indicated a change in locus number for approx. 12% of the
loci, accompanied by an extensively modified linear order of genes and many chro-
mosome rearrangements (Tanksley et al., 1988). These differences in copy number
are in line with the slightly larger genome size of tomato compared to potato and
the expanded pepper genome compared to tomato.

Our observation that small rearrangements are more frequent than large-
scale differences seems consistent with earlier observations made for other plant
genomes (Bennetzen, 2000a). In particular, micro-collinearity and conserved link-
age between orthologs is apparent, but we nevertheless found many small excep-
tions. Observations in yeast and Drosophila, for example, show that direct repeats
of LTR transposon copies may act in reciprocal recombination, giving rise to gene
loss. Reciprocal recombination between inverted repeats from LTR retrotrans-
posons may result in gene inversions, while recombination between repetitive ele-
ments on different chromosomes may lead to reciprocal translocation (Bennetzen,
2000b; Gray, 2000). In some cases, we suspect the micro-collinearity in 2L has been
disrupted by TEs. For example, two translocated AP2-like transcription factors in
tomato 2L with a disrupted conserved linkage are flanked by LTRs from a sin-
gle retrotransposon, suggesting its involvement in the relocation and inversion of
these genes. Strikingly, the inversion of AP2-like transcription factors in tomato
maps to near the fw2.2 and fs2.2 loci controlling fruit weight and bell-shaped
fruit morphology in the heirloom tomato cv. Yellow Stuffer and garden pepper
(Grandillo et al., 1999; van der Knaap and Tanksley, 2003). The inverted context
of genes functioning in signalling pathways has been reported to affect traits and
cause phenotypic changes in Drosophila (Hoffmann et al., 2004). However, we cur-
rently have no functional or phenotypic evidence indicating an inversion-induced
difference in gene interaction or regulation in tomato.
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4.5 Analyses of chromosomal rearrangement junctions and
rearrangement scenario

Currently, it is unclear what might have caused the large rearrangements in 2L.
TEs are known to induce large inversions, deletions and translocations, mediated
directly via their transposition mechanisms, or indirectly via homologous recombi-
nation, or by ectopic or non-allelic homologous recombination (Bennetzen, 2000b).
For example, in maize (Zea mays), pairs of TEs spaced beyond 100 kb are efficient
chromosome breakers, generating deletions and inversions via alternative transpo-
sition (Huang and Dooner, 2008; Zhang et al., 2009). Recombination in plants is
not limited to homologous chromosomes only. For example, inter-chromatid recom-
bination can result in deletions and inversions, and such recombination between
different genomic regions can lead to large chromosomal rearrangements (Gaut
et al., 2007). Furthermore, it is important to realize that meiotic as well as mitotic
rearrangements in plants can be passed to progeny. In Arabidopsis, elevated so-
matic recombination rates have been observed and found to be positively correlated
with DNA damage and stress, suggesting that genomic flux caused by recombi-
nation plays an important role in environmental stress adaption. Direct evidence
for genomic flux involving large-scale rearrangements caused by repeat-mediated
recombination has not been reported for plants. However, indirect evidence has
been found in Brassicaceae species, in which rearrangements are to a large extent
located near repetitive sequences (Ziolkowski, 2003; Lysak et al., 2006).

In general, any chromosomal rearrangement involves a breakage and a sub-
sequent repair of the chromosome ends or fusion to another chromosome end. Of
the different types of rearrangements in plant genomes, inversions probably occur
the most frequently, and can range size from a few kb up to hundreds of genes in
length (Coghlan et al., 2005). Our results are in agreement with this notion, show-
ing that inversion is the predominant rearrangement type in tomato 2L, 6S, 10L
and 11L. Previously, Livingstone et al. (1999) inferred the most recent ancestral
genome using lineage-specific rearrangements, the phylogeny of tomato, potato and
pepper (Spooner et al., 1993), and comparative maps. We reasoned that, as the
potato and pepper 2L organization appear similar, with pepper being considered
as an outgroup, and because the rearrangements are tomato lineage-specific, the
potato/pepper topology may be considered ancestral. In the proposed model, the
inversion rearrangement was preferred above other types, and the reconstruction
was directed from potato/pepper towards the tomato 2L organization. Indeed,
when calculating a most parsimonious rearrangement scenario, only four reversion
steps were needed to transform the potato 2L organization into the tomato 2L or-
ganization. However, we currently cannot exclude other rearrangement pathways.
Tandem repeats and (retro)transposons are present also outside the 2L junction
breaks, and as we have no indications about the relative order of the proposed
inversion steps, the proposed model should be considered as a working hypothesis.

The efficiency and success of introgressive hybridization breeding on the
basis of DNA-based selection depends, among others, on adequate identification of
chromosome organization. The implication of technological advances with respect
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to next-generation sequencing technology for the use of extant germplasm resources
is that large numbers of complex genomes can be sequenced relatively fast and
cheaply. This will undoubtedly speed up identification of compatible genomes for
introgression breeding, the rearrangement phylogeny within the Solanaceae, and
reconstruction of the ancestral Solanum karyotype. The present project is a first
step in mining of structural genetic diversity and the development of genome-based
breeding tools.
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Figure 2.S1: Integrated map of tomato and potato chromosome 2L segments. In the
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genetic maps are displayed at the top and bottom. The order and relative position of
markers without a genetic position is derived from blastn hits to potato scaffolds. Arrows
indicate approximate positions of chromosome collinearity breaks.
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Figure 2.S3: Comparative map of tomato, potato and pepper chromosome 11L. Map
positions of genetic markers and L resistance gene are according to Yang et al. (2009).
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Figure 2.54: Tomato synteny browser snapshot of a 150 kb region at the F18 junction.
Shaded connectors represent NUCmer sequence alignments which connect segments be-
tween DM4 (blue bar top left panel) and DM12 potato scaffolds (blue bar top right panel),
and tomato scaffold SL2.31sc03665 (red bar bottom panel). Red and yellow diamonds rep-
resent EXPEN2000 markers and SGN markers, respectively. SGN tomato unigenes, SGN
potato unigenes, predicted proteins from ITAG and BGI annotations, Genscan predicted
genes, LTR finder predicted retrotransposons, and RepeatMasker predicted repeats are
represented as orange, yellow, silver, blue, pink and green colored gbrowse glyphs, respec-
tively, with arrow heads displaying the orientation. Each annotated protein is depicted
with its identifier, ortholog group id and ortholog group size. Purple bars (bottom panel)
represent tomato BACs HO84G06 and HO28F18 spanning the F18 junction between DM4

and DM12 scaffold segments.
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Figure 2.S5: Distribution of class I transposon-related repeats in chromosome 2L. The
histograms reflect transposon content in 20 kb bins. Vertical blue bars represent 20 kb
intervals at rearrangement junctions. Transposon families are depicted as headers in each
histogram. The tomato chromosome 2L topology is represented by the bottom bar.
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Figure 2.S6: Distribution of class II transposon-related repeats in chromosome 2L. The
histograms reflect transposon content in 20 kb bins. Vertical blue bars represent a 20 kb
interval at rearrangement junctions. Transposon families are depicted as headers in each
histogram. The tomato chromosome 2L topology is represented by the bottom bar.
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Figure 2.S7: Identity plot of synteny junctions. Left panel: alignment plot of 60 kb
sequences flanking the DM4DM12 junction and DM244DM12 junction (y-axis) to chro-
mosome 2L segment of S. lycopersicum (x-axis). Segments junctions are indicated by
dashed horizontal blue lines. A 4.5 kb inverted repeat is indicated by red and blue col-
ored arrows. Tomato segments syntenic to potato are indicated below the x-axis. Right
panel: Identity plot of 60kb sequences flanking synteny junctions. A 4.5 kb inverted
repeat and a 276 bp repeat are denoted by a and b respectively.
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Table 2.S1: Large-scale rearrangements between tomato, potato and pepper. Rearrange-
ment types are indicated as reversal (r), translocation (t), deletion (d) and insertion (i),
or not determined (n.d.).

TOMATO EXPEN 2000 SL2.40 SCAFFOLD  MATCH REARRANGEMENT
CHROMOSOME  POSITION (CM) S1zE (MB)  TYPE

potato  pepper

2L 89.3 - 143 SL2.40sc03665 6.7 r, t n.d.
6S 1-10 SL2.40sc04474 4 r, t,d n.d.
10L 52.7 - 62 SL2.40sc04199 2.5 r,t,d r

11L 74 - 90 SL2.40sc03876 1.8 r, t,1i r, t

)

Table 2.S2: Predicted ortholog pairs and paralogs in tomato and potato chromosome
2L. Average gene copy numbers are defined as number of tomato (Sly) or potato (Stu)
genes per ortholog group and are indicated between brackets.

SLY. ORTHO  STU ORTHO  SLY MULTI STU MULTI SLY MULTI

GRPS GRPS STU SINGLE ~ SLY SINGLE ~ STU MULTI
grps 623 623 12 16 8
Sly genes 721 (1.16) 0 80 (6.66) 16 (1) 38 (4.74)
Stu genes 0 679 (1.09) 12 (1) 51 (3.20) 29 (3.6)
Sly paralogs 98 0 68 0 30
Stu paralogs 0 56 0 35 21
Sly orthologs 623 0 12 16 8
Stu orthologs 0 623 12 16 8
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Table 2.S4: Parsimonious trajectory for rearrangements between potato and tomato
chromosome 2L output by GRIMM (http://nbcr.sdsc.edu/GRIMM/grimm.cgi; Tesler,
2002). The order of segments are displayed as positive or negative integers representing
a forward or reversed segment orientation respectively. The minimal amount of steps
needed to transform the order and position of tomato segments to that observed in
potato involves 4 inversions (reversals). The repositioned segments are underlined.

AFFECTED CHROMOSOMES

STEP DESCRIPTION
before after
1 (potato chr2L) reversal 1 2 3 4 5 6 7 -1 2 3 4 5 6 7
2 reversal -1 2 3 4 5 6 7 -1-2 3 4 5 6 7
3 reversal -1-2 3 4 5 6 7 -1-4-3 2 5 6 7
4 reversal (tomato chr2l.) -1 -4 -3 2 5 6 7 =-1-6-5-2 3 4 7
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Chapter 8

Snf2 family gene distribution in
higher plant genomes reveals
DRD1 expansion and
diversification in the tomato
genome

Abstract

As part of large protein complexes, Snf2 family ATPases are responsible for energy
supply during chromatin remodeling, but the precise mechanism of action of many
of these proteins is largely unknown. They influence many processes in plants, such
as the response to environmental stress. This analysis is the first comprehensive
study of Snf2 family ATPases in plants. We here present a comparative analysis
of 1159 candidate plant Snf2 genes in 33 complete and annotated plant genomes,
including two green algae. The number of Snf2 ATPases shows considerable varia-
tion across plant genomes (17-63 genes). The DRD1, Rad5/16 and Snf2 subfamily
members occur most often. Detailed analysis of the plant-specific DRD1 subfamily
in related plant genomes shows the occurrence of a complex series of evolutionary
events. Notably tomato carries unexpected gene expansions of DRD1 gene mem-
bers. Most of these genes are expressed in tomato, although at low levels and with
distinct tissue or organ specificity. In contrast, the Snf2 subfamily genes tend to
be expressed constitutively in tomato. The results underpin and extend the Snf2
subfamily classification, which could help to determine the various functional roles
of Snf2 ATPases and to target environmental stress tolerance and yield in future
breeding.

Bargsten, J. W., Folta, A., Mlynarova, L., and Nap, J.-P. (2013). PLoS ONE, 8(11):e81147.



CHAPTER 3

1 Introduction

In eukaryotes, genomic DNA is organized into chromatin, which is physically re-
stricting the access of regulatory proteins to the genome (Eisen et al., 1995). The
access to the genome can be changed by chromatin modifying activities, altering
histone tails or the histone cores covalently; and chromatin remodeling activi-
ties, altering DNA-histone interactions non-covalently (Eisen et al., 1995). Both
provide important epigenetic mechanisms to regulate gene expression (Flaus and
Owen-Hughes, 2011). The associated ATP-dependent changes in nucleosome orga-
nization catalyzed by Snf2-family ATPases accounts for a large part of chromatin
remodeling activities (Flaus and Owen-Hughes, 2011).

Snf2 ATPases show broad functional diversity and are involved in a variety
of genome-wide processes involving DNA, such as transcription, replication, repair
and recombination. As ATPase they provide a motor that can translocate and move
a complex directionally on double-stranded DNA (Flaus and Owen-Hughes, 2011).
In general, Snf2 family ATPases form large complexes with interacting partners
(Knizewski et al., 2008), although few Snf2 family members can act alone (Hauk
et al., 2010; Lall, 2011). Swapping the ATPase region of two different Snf2 family
ATPases in different complexes can also exchange their functionality (Fan et al.,
2005). The Snf2 ATPases therefore shape the functionality of a complex.

A first analysis of Snf2 family ATPases based on 30 sequences resulted in a
classification of eight distinct subfamilies (Eisen et al., 1995). Snf2 family ATPases
are characterized by seven helicase motifs (Eisen et al., 1995; Flaus et al., 2006;
Flaus and Owen-Hughes, 2011). The sequence spanning these motifs is called the
Snf2 family ATPase region (fig. 3.51). The conserved ATPase region averages at
about 400 amino acids (Eisen et al., 1995) and is supposed to catalyze the translo-
case activity. A new survey of 1300 Snf2 family ATPases extended the classifi-
cation to six groups (Snf2-like, Swrl-like, SSO1653-like, Rad54-like, Rad5/16-like
and distantly-related Snf2 members) and 24 subfamilies (Flaus and Owen-Hughes,
2011). The division into groups and subfamilies is based on phylogenetic analyses
of the Snf2 family ATPase region. In many family members additional (accessory)
domains are present, reflecting the sequence-based subfamily classification (Flaus
et al., 2006; Knizewski et al., 2008). Not all subfamilies occur in every species or
kingdom. An example is the DRD1 (defective in RNA-directed DNA methylation)
subfamily occurring only in plant species (Kanno et al., 2004; Matzke et al., 2006).

In plants, functional annotation of Snf2 family members is most advanced
in Arabidopsis. The Arabidopsis genome encodes 41 Snf2 family gene loci (http:
//www.chromdb.org; http://www.snf2.net). Encoded genes are distributed over
six groups and 18 subfamilies. The specific function of the majority of the Snf2
proteins in plants is unknown (Knizewski et al., 2008), apart from the general
contribution to DNA repair and recombination in development (Flaus and Owen-
Hughes, 2011; Sang et al., 2012). Different Snf2 ATPases, including members of
the Snf2 and DRD1 subfamilies, have been shown to play a role in plant stress
responses. Hence, the exploitation of such genes provides the basis for further
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functional characterization and could help develop plants that are better able
to withstand environmental variation and/or (a)biotic stress. This may result in
higher yields in less favorable environments.

We here present the first comprehensive analysis of Snf2 family members
within the plant kingdom, to investigate phylogenetic relationships and infer pu-
tative specific functions of individual family members. Plant genomes show a high
variability of the number of Snf2 genes, ranging from 17 to 63 members. The
tomato (S. lycopersicum) genome shows gene expansions of the DRD1 subfamily
with distinct expression patterns, suggesting further subfunctionalization of the
duplicated members.

2 Materials and Methods

2.1 Genome sequence data, databases and software

Tomato (S. lycopersicum) assembly release 2.40 and iTAG annotation release 2.3
(Sato et al., 2012) were retrieved from the SolGenomics Network (SGN; http:
//www.solgenomics.net). The potato (S. tuberosum group Phureja DM1-3 516R44
(CIP801092)) genome assembly v3 and annotation v3.4 (Xu et al., 2011) were
retrieved from the Potato Genome Sequencing Consortium (PGSC; http://www.
potatogenome.net). Where available, SGN Unigene builds of other solanaceous
species were used (http://www.solgenomics.net; accessed on 7 October 2011).
Other green plant genome data were taken from Phytozome (Goodstein et al.,
2012) (http://www.phytozome.net; version 7). The rice (O. sativa) annotation
of Phytozome was enhanced by incorporating the annotation of the Rice An-
notation Project Database (Itoh et al., 2007; Tanaka et al., 2008). In addition,
protein sequences from ChromDB (http://chromdb.org; accessed on 7 October
2011), UniRef100 (http://www.uniprot.org; accessed on 7 October 2011) and Ref-
Seq (Pruitt et al., 2005) (accessed on 7 October 2011) were used. Arabidopsis
genome data were obtained from TAIR (http://www.arabidopsis.org). Snf2 fam-
ily analysis of Arabidopsis and rice was taken from the general Snf2 family pro-
tein resource (http://www.snf2.net) for reference (Flaus et al., 2006). Taxonomy
information was obtained from the Tree-of-Life project (http://tolweb.org) and
Phytozome.

2.2 Phylogenetic Analysis

Data preparation, conversion and filtering were performed with BioPerl (Stajich
et al., 2002), Bio::Phylo (Vos et al., 2011) and custom Perl scripts. For the Snf2
gene calling in potato, potato protein sequences were determined by aligning all
candidate Snf2 ATPase protein sequences against the potato genome using tblastn
(Altschul et al., 1997) (E-value < 10). Hits were clustered into genomic regions
with single linkage clustering (distance cut-off of 15kb) using C Clustering Li-
brary/Algorithm::Cluster (de Hoon et al., 2004). Final gene models were pre-
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dicted with Exonerate (Slater and Birney, 2005) using the parameters »—model
protein2genome —showvulgar no —showalignment no —showtargetgff yes« in the re-
spective regions. Predicted potato gene models, unigenes, cDNAs and transcript
sequences were translated using ESTScan2 (Lottaz et al., 2003) (additional pa-
rameter »-1 200«) with the tomato hexamer frequency model obtained from SGN
(http://www.solgenomics.net).

Domain detection was performed with HMMER v3.0 (Finn et al., 2011)
and InterProScan (Zdobnov and Apweiler, 2001) using InterPro Database version
35.0 (15 December 2011). Domain profiles were obtained from Pfam (Finn et al.,
2010) and SMART (Letunic et al., 2009). A domain detection threshold of 1le-3
was used. It was adjusted with Arabidopsis as reference. To create an HMM model
of the ATPase region, seed sequences were selected from UniProt, plant section,
with the requirement of having the SNF2_N and Helicase  C domains present.
Protein sequences smaller than 200 aa or with »putative«, »uncharacterized« or
»predicted« in the description were excluded. The ATPase region was selected
manually by identifying its conserved motifs Q-N (according to Flaus et al. (2006))
in the multiple alignment of the seed sequences. The model itself was trained
with HMMER v3.0 (Finn et al., 2011), using hmmbuild with default parameters.
A bitscore-based threshold of 200 was used to filter for Snf2 candidates. It was
adjusted with Arabidopsis as reference.

Protein alignments were carried out with MAFFT v6.717b (Katoh et al.,
2005) using the E-INS-i mode with a maximum of 1000 iterations. Phylogenetic
trees were estimated with RAxML v7.7.5 (Stamatakis, 2006; Stamatakis et al.,
2008) using the fast bootstrapping mode and the JTT matrix model (parameters
were »-x 12345 -p 12345 -f a -m PROTGAMMAJTTF«).

Gene duplications and losses were evaluated with Notung (Chen et al.,
2000). Intrinsically disordered regions were analyzed with FoldIndex (Prilusky
et al., 2005) using a score cut-off of -0.2. Phylogenetic trees were visualized with
Dendroscope v3 (Huson et al., 2007) or E.T.E. (Huerta-Cepas et al., 2010).

2.3 Expression data and analysis

Publicly available RNA-seq datasets from tomato (Solanum lycopersicum cv. Heinz
1706; data SRA049915) were retrieved from the SRA database (http://www.
ncbi.nlm.nih.gov/sra). Sequence reads were mapped against the tomato reference
genome (v. 2.40) with GSNAP (Wu and Nacu, 2010). The number of fragments
per kb of exon per million fragments mapped (FPKM-values) were estimated for
each gene model with cufflinks (Trapnell et al., 2010) on the basis of the iTAG
2.3 annotation and in-house enhanced gene models, where applicable. Conversions
between SAM and BAM formatted alignments were performed with SAMtools
(Li et al., 2009). Genes were categorized in three classes of expression: lowly ex-
pressed (FPKM 5), moderately expressed (5 < FPKM 200) and highly expressed
(FPKM > 200). These categories are similar to a recent analysis of maize RNA-seq
data (Hansey et al., 2012), however without the more stringent cut-off proposed.
For comparison, the cut-off based on the 95% confidence level was also used for
analysis.
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2.4 RT-PCR analysis

Tomato cultivar Heinz plants were grown in a controlled greenhouse at 23°C
in long-day conditions (16 h light/8 h darkness). Seedlings were grown on 1/2
MS (Murashige & Skoog) agar plates supplemented with 1% sucrose in a grow-
ing chamber at 25°C in long-day conditions. Total RNA was isolated from 10-
day-old seedlings, as well as from flowers, leaves and green mature fruits from
greenhouse-grown plants using the E.Z.N.A.™ Plant RNA Mini Kit (Omega Bio-
Tek, Inc., USA) followed by on column DNase treatment (Qiagen, RNase-free
DNase Set). One microgram of RNA was used for ¢cDNA synthesis using the
iScript™ ¢DNA Synthesis Kit (Bio-Rad Laboratories, Inc., USA) according to the
recommendations of the manufacturer. Primers were designed with Primer3Plus
(http://www.bioinformatics.nl/primer3plus; Untergasser et al., 2007) and checked
for uniqueness in the tomato genome v. 2.40/ ITAG annotation v. 2.3 with the
short-sequence blastn search of the BLAST 2.2.22+ toolkit (http://blast.ncbi.nlm.
nih.gov/Blast.cgi). Primers used are listed in table 3.S1. All primer pairs were val-
idated by generating positive PCR reactions on genomic DNA. For RT-PCR, 2.5
nL of 10-times diluted cDNA was used. In all cases, actin was used as a reference
gene (Lgvdal and Lillo, 2009). The conditions used for all RT-PCR were: 95 °C for
4 min, followed by 25 to 35 cycles of 95°C for 30 s, 60°C for 30 s, 72°C for 90 s
and final extension at 72°C for 7 min.

The activity of the primers was tested in a series of PCR reactions on
genomic DNA with different concentrations of each primer. The concentration
with highest band intensity was determined as the best primer concentration. The
specificity of all primer pairs was established in a series of PCR reactions with
tomato genomic DNA or ¢cDNA to have only one single band of expected size
(data not shown).

3 Results

3.1 Variable numbers of Snf2 family members in plant
genomes

Snf2 family members in the predicted proteomes of 33 plant genomes including
two green algae, were identified (table 3.52). To prevent the inclusion of peptide
fragments in the gene predictions, a cut-off of 200 amino acids (aa) was used,
given that the conserved ATPase region has a length of about 400 aa (Eisen et al.,
1995). All protein sequences longer than 200 aa were analyzed for the presence of
the SNF2 N and Helicase_ C domain. To be considered present, domains required
a match in the protein sequence with an E-value smaller than le-3. Protein se-
quences containing at least one SNF2_ N domain and one Helicase_ C domain were
listed as candidate Snf2 ATPase. To improve accuracy, a HMM model spanning
the conserved ATPase region was created. The initial result set was filtered with
this model and only candidates with a bitscore of at least 200 were used for fur-
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ther analyses. For Arabidopsis, all (41) previously known Snf2 genes (ChromDB;
Gendler et al., 2008) were identified (fig. 3.1). In total, 1159 family members were
identified (fig. 3.1).

The total number of candidate Snf2 ATPases in plant genomes (fig. 3.52)
shows considerable variation, ranging from 17-63 genes, with an interquartile range
of 11, settled between 32 (Q1) and 43 (Q3). The papaya (Carica papaya) genome
has only 17 candidate Snf2 family members, whereas in soybean (Glycine maz, 63
members) and flax (Linum usitatissimum, 53 members) show an elevated number
of family members. We identified 44 candidate Snf2 family members in the tomato
genome (fig. 3.1), whereas the potato genome would carry only 23 candidate mem-
bers that are also present in the official potato genome annotation. Given that both
genomes are closely related in the Solanum genus, the surprising difference mo-
tivated an identification and re-calling of Snf2 genes in the potato genome. The
re-calling identified 21 unannotated candidate Snf2 genes in the potato genome, in
addition to the 23 from the first analysis. In other plant annotations, the number
of potential Snf2 members was comparable between the genome annotation from
Phytozome (Goodstein et al., 2012) and the re-calling (data not shown). Hence,
all subsequent analyses were carried out with the set of 44 Snf2 family members
in potato, the tomato annotation from ITAG and the annotation from Phytozome
in all other cases.

3.2 Phylogenetic analysis

To infer evolutionary and potentially functional relationships of all plant candidate
Snf2 genes, a phylogenetic tree was estimated on the basis of the conserved ATPase
region of the protein sequence, including 30 aa flanking sequence on both sides to
compensate for inaccuracies in domain prediction. To provide a more complete
survey with focus on the Solanum genus, also transcriptome and unigene data
(table 3.S2) were included. Each Snf2 subfamily was labeled according to the
name of the Arabidopsis Snf2 subfamily in the relevant branch of the estimated
tree. The unrooted tree summarizing the evolutionary relationships is presented
in fig. 3.2.

Figure 3.1 (facing page): Distribution of Snf2 family members in plant genomes.
Groupings and subfamilies on the left are named according to the Arabidopsis subfamily
classification (Knizewski et al., 2008). Species names on the top are organized on the
basis of their phylogenetic relationship according to Phytozome (Goodstein et al., 2012).
Snf2 candidate member Cre09.9390000.t1.1 (Chlamydomonas reinhardtii) could not be
assigned to any subfamily and was excluded. Subfamily counts are shaded according to
the deviation from the subfamily mean in standard deviations (sd). The total count is
given on the top right cell. Mean and standard deviations per subfamily are indicated in
the last column.
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Figure 3.2: Unrooted phylogenetic tree of all candidate Snf2 genes in plant genomes.
The full tree from which this subset was extracted is presented in fig. 3.S3. The subfamily
branches were collapsed to a single node that represents the first split that is part of the
subfamily branch. Confidence values (50-100) are indicated at the relevant splits of the
branches. The tree is based on 100 bootstrap replicates. The leaf tagged »not classified«
indicates candidate Snf2 members that are not part of a known subfamily, including
Cre09.9390000.t1.1 (Chlamydomonas reinhardtii) and members of sequence databases.

All 18 subfamilies identified are present in the tree and the overall tree
topology of plant Snf2 genes is in agreement with earlier analyses (Flaus et al.,
2006), although members of the subfamilies Rad 5/16 and ERCC6 were distributed
over two different branches. In green algae, only 3 of the 18 subfamilies are not
present (DRD1, ALC1 and Ino80), suggesting a high conservation of Snf2 ATPases
in the plant kingdom. The distribution of genes over the various Snf2 subfamilies
per plant species is presented in fig. 3.1. For this estimation, only whole genome
data were included. Half of the subfamilies occur in relatively small numbers (mean
< 2), whereas 19 of 33 plant species miss one or more of these subfamilies. Four
subfamilies (mean > 3) are large: DRD1, Rad 5/16, Snf2 and ERCC6. Largest is
the plant-specific DRD1 subfamily (148 members, mean 4.48), followed by the Rad
5/16 subfamily (144 members, mean 4.36) and the Snf2 subfamily (114 members,
mean 3.45). Eight Snf2 candidate members originating form ChromDB, RefSeq and
UniRef100 and the Snf2 candidate member Cre09.9390000.t1.1 ( Chlamydomonas
reinhardtii) could not be assigned to any subfamily (not classified). These members
were not taken into account. More plant genomes will have to be sequenced to
ascertain whether the Snf2 family member distribution reflects any phylogenetic
bias in genome sequencing.
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3.3 Snf2 family members involved in stress responses:
DRD1 and Snf2

We focused further analyses on the two subfamilies reported to be connected to
stress responses in plants, the DRD1 and Snf2 subfamilies (Huettel et al., 2007;
Mlynérovd et al., 2007; Walley et al., 2008; Lépez et al., 2011) and on tomato
and potato. Functional annotation of these subfamilies is guided by the functional
information available for Arabidopsis genes.

DRD1 subfamily

In Arabidopsis, the DRD1 subfamily has six members. Tomato has eleven
members and potato seven. To characterize the phylogenetic relationships between
the DRD1 subfamily members of plant species in the Asterid clade (potato, tomato
and Mimulus guttatus) and Arabidopsis as model plant at a high resolution, the
further analysis was focused on these four plants. According to the species tree
(fig. 3.S2), Mimulus is most close to the two solanaceous plants of interest. It has
five DRD1 members.

In the unrooted phylogenetic tree based on the data from these four species
(fig. 3.3), the DRD1 members could be grouped in three distinct branches, labeled
a, b and ¢, each containing two Arabidopsis members. AtCHR42 and AtCLSY1 are
in branch a, AtCHR31 and AtCHR40 in branch b, whereas AtDRD1 and AtCHR3)
are in branch c. In all three branches, DRD1 members from tomato, potato and
Mimulus are present. The tree shows that AtCHR42 and AtCLSY1 are in-paralogs
(Koonin, 2005) with one ortholog in tomato, potato and Mimulus (fig. 3.3; branch
a). Likewise, AtDRD1 and AtCHR34 are in-paralogs with also one ortholog in
tomato, potato and Mimulus (fig. 3.3, branch c). It is apparent from the tree that
branch b is the most complex. In addition to the two members of Arabidopsis
in branch b, Mimulus has 3, potato 7 and tomato 9 members. The number of
members in branch c is relatively stable in other plant species, ranging from 1 to 3
(mean 1.49, sd 1, tomato and potato excluded). This indicates a relative expansion
of DRD1 ATPases in the tomato and potato genomes.

The potato/tomato members establish a separate sub-branch without mem-
bers of either Arabidopsis or Mimulus suggesting independent evolution of DRD1
members in tomato and potato. Such evolution requires, the occurrence of a gene
duplication in the common ancestor of all four species (labeled »ancient duplica-
tion« in fig. 3.3), followed by independent gene losses in all four species. The high
confidence value (99 from 100) for the ancient duplication supports this scenario.
Also analysis with Notung (Chen et al., 2000) supports the mutual gene loss sce-
nario (details not shown). The evolutionary history of solanaceous DRD1 genes
suggests specific functions for such genes in tomato and potato.
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Figure 3.3: Analysis of the DRD1 subfamily in tomato, potato, Mimulus and Arabidop-
sis. The left side shows a detailed view of the DRD1 subfamily branch of an unrooted
tree based on 1000 bootstraps of Snf2 data from Arabidopsis thaliana (Ath), Mimulus
guttatus (Mgu), Solanum lycopersicum (Sly) and Solanum tuberosum (Stu). Confidence
values (50-100) are given at the relevant branches of the tree. Identifiers give the name of
the organism in three-letter abbreviations together with gene identifiers. The individual
branches identified are indicated by letters in lowercase on the right side. To increase
readability, some branch edges have been extended by dotted grey lines. These grey dot-
ted lines are therefore not part of the estimated branch length. The right side shows
structural elements (domains and unfolded regions) in the protein sequence of the DRD1
subfamily members in Arabidopsis, Mimulus, tomato and potato. Besides the ATPase
region no other domains are present in these genes. A black dot at the right end of the
figure indicates the expression of the respective gene in tomato based on the analysis of
RNA-seq data.
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To infer potential functions of the DRD1 subfamily members, we investi-
gated the presence of additional structural/functional elements in the protein se-
quences. The DRD1 subfamily members of the four species here investigated had
no accessory domains (fig. 3.3). In many cases, the N-terminal region of DRD1 sub-
family members shows a predicted disordered region. In Arabidopsis, this applies
to all DRD1 subfamily members, except for the AtDRD1 protein (fig. 3.3).

Snf2 subfamily

In Arabidopsis, the Snf2 subfamily has four members, while only three
were found in tomato, potato and Mimulus. The tree estimated on data from
these four species again shows three distinct branches (fig. 3.54), labeled a, b and
¢, respectively. The Arabidopsis genes AtCHR12 and AtCHR23 cluster together
(fig. 3.54, branch a), in addition to single genes of the other species. It shows that
AtCHR12 and AtCHR23 are in-paralogs with one ortholog in tomato, potato and
Mimulus. The two Arabidopsis genes are likely to be the result of a gene duplication
event specific to the Arabidopsis genus. The other Arabidopsis genes form one-to-
one ortholog relationships with the respective tomato, potato and Mimulus genes
(fig. 3.54). The evolutionary history of the Snf2 subfamily is therefore overall much
less eventful than the history of the DRD1 subfamily.

AtCHR12 and AtCHR23 (branch c) carry an unfolded region at the C-
terminal end which is not present in any of the other members of the branch
(fig. 3.54). The difference in length of the proteins in this subfamily is remarkable.
Whereas branch a consists of relatively short proteins of approx. 1100 amino acids,
branch b is characterized by very large proteins, the largest one (AtSYD) carrying
3574 amino acids. AtSYD has a considerably larger C-terminal end compared to
all orthologs in its branch and compared to all members in the subfamily. Yet it
only shows an unfolded region in the C-terminal end and no other functional or
structural domains.

3.4 Expression analysis of DRD1 and Snf2 subfamilies

Expression characteristics could also help elucidating the biological function of
DRD1 and Snf2 subfamily members. We evaluated the expression profile of these
genes in tomato public-domain RNA-seq libraries (Sato et al., 2012) for flowers,
roots, leaves and various stages of fruit of tomato cv Heinz 1706 (table 3.S3).
The FPKM-values of all libraries were calculated and visualized as heat map for
the DRD1 and Snf2 subfamilies (fig. 3.55). All three Snf2 subfamily members of
tomato are moderately expressed in the majority of the libraries analyzed. No
tissue specificity and/or developmental control are apparent, suggesting a consti-
tutive expression.

In contrast, expression of members of the DRD1 subfamily is more het-
erogeneous. The highest and most diversely expressed DRD1 subfamily genes are
Solyc01g109970 (branch c) and Solyc06¢g050510 (branch a). Solyc019109970 is con-
stitutively expressed in all libraries with FPKM values from 5 (leaves) to 37 (fully
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ripe fruit). Expression of the Solyc06¢g050510 gene is similar, with the highest
FPKM-value of 30 in roots, mature green fruits, immature fruits and 3-cm fruits.
The lowest expression shows this gene in breaker and fully ripe fruits (FPKM
around 7). The gene Solyc01g068320 shows low specific expression in flower and
flower bud tissue. The other five members that constitute the solanaceous-specific
expansion of branch b in tomato show extremely low expression.

To confirm these expression characteristics, semi-quantitative RT-PCR was
performed on leaves, flowers and mature fruits. To be able to extend the analy-
sis to early stages of plant development, 10-day-old in-vitro-grown seedlings were
included. RT-PCR analysis of the three Snf2 genes confirmed expression in all
four tissues analyzed, in concordance with the RNA-seq analysis (fig. 3.4). It also
largely confirmed the RNA-seq results of the DRD1 subfamily genes (fig. 3.4).
Solyc08g077690 is expressed in all tissues examined at the highest level shown by
any member in this branch. Expression of Solyc01g068320 is restricted to flower
and fruit tissue, the latter at lower levels. For Solyc01g068300 RT-PCR shows a
relatively easily detectable product in all tissues except seedlings. Also expression
of Solyc02¢g033050, Solyc01g060460 and Solyc089077610 is detectable by RT-PCR,
in all tissues. However, the level of expression is low to very low, approaching the
lower limit of reliable detection. Gene Solyc04g054440 is very lowly expressed in
possibly only fruits. The highly variable expression patterns of the various DRD1
subfamily genes indicate that the putative function of the encoded DRD1 proteins
is likely to be subtle in terms of time or location.

4 Discussion

The Snf2 family of ATPases is a large family of chromatin remodeling enzymes
that have versatile roles in a variety of fundamental processes in growth and devel-
opment. In plants, little is known about the function of individual members of this
family, although notably in Arabidopsis functional relationships with gene regu-
lation, DNA recombination, DNA repair and stress tolerance have been reported
(Bezhani et al., 2007; Mlynarova et al., 2007; Walley et al., 2008). Here, we present
the first comprehensive comparative analysis of all Snf2 genes in 33 sequenced and
annotated plant genomes, including two green algae. We have identified and an-
alyzed 1159 potential candidate Snf2 family ATPases, of which all but one could
be placed in previously established groups and subfamilies and represent genuine
plant Snf2 genes. The variation in numbers of Snf2 genes is large, ranging from 17
in papaya to 63 in soybean. This suggests a broad functional diversification of this
gene family in the plant kingdom. The high member counts in flax and soybean
may originate from recent whole-genome duplications in both species (Schmutz
et al., 2010; Wang et al., 2012b).

Our results for rice show considerably more differences when compared to
another recent study of Snf2 family genes (Li et al., 2011), in which 39 putative
Snf2 family genes are identified. The overall tree presented (Li et al., 2011) does
not seem to agree well with the subfamily classification. An example is a branch
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Figure 3.4: RT-PCR expression analysis of DRD1 and Snf2 subfamilies of tomato Snf2
ATPase genes. The tissue used is indicated on the x-axis. The individual genes are indi-
cated of the right, the branches identified on the left. The expression of the actin gene
(25 cycles) was used as control (lower panel). The number of PCR cycles used for the
analysis of the individual gene was adjusted to generate a detectable amount of PCR
product. For most of genes, 35 cycles were used. Genes marked with superscript a (%)
were amplified with 29 cycles. For the actin gene 25 cycles were used.

containing rice genes (0s02¢0114000 (Snf2), Os01g0779400 (Risl), Os05g0150300
(Iswi), 050590392400 (DRD1) and Os07¢g0497000 (Mi-2)) that are distributed in
five different subfamilies according to our classification. Possible explanations for
the differences are phylogenetic tree modeling based on the complete protein se-
quence rather than the conserved region, and/or the use of another rice annotation
(Tanaka et al., 2008; http://rapdb.dna.affrc.go.jp).

Surprising sources of error in Snf2 family member identification are the pub-
licly available genome assemblies and annotations. Our example in potato high-
lights the better performance of gene calling within a protein family opposed to au-
tomatic gene calling. Half of the Snf2 family members are absent from the current
genome annotation of potato. Assembly and calling of Snf2 genes may be trouble-
some for the partly automated pipelines in place for overall genome assembly and
annotation, despite manual curation effort. Here we show increased sensitivity of
candidate Snf2 family gene identification by iterative rounds of homology-based
gene prediction. This approach minimizes errors in the predicted coding region
that would affect the multiple sequence alignment and phylogenetic reconstruc-
tion considerably. For Arabidopsis and rice, the plant species with the richest set
of annotation and experimental data, inferred gene models were consistent with
the currently available high-quality annotations (not shown). Therefore, the an-
notation of the potato Snf2 family is likely to have improved markedly with the

59


http://rapdb.dna.affrc.go.jp

CHAPTER 3

homology-based prediction routine put in place and is recommended for future
analyses. The accuracy of the prediction of the proper coding region is not likely
to be improved with the help of (family-) specific gene models or better hexamer
models. Such homology-based prediction will not safeguard against errors in as-
sembly.

Not anticipated from the earlier analyses of Snf2 family genes (Flaus et al.,
2006) is the relative expansion of the DRD1 (148 genes), Rad5/16 (144 genes) and
Snf2 (114 genes) subfamilies in plant genomes. So far, members two of these sub-
families have been associated with environmental stress responses in Arabidopsis,
possibly indicating the relative importance of chromatin remodeling in combating
environmental stress in plants. The most abundant subfamily, DRD1, has evolved
from apparent non-existence in non-plant species (http://www.snf2.net) and lower
plants, such as Volvoz carteri and Chlamydomonas reinhardtii, to the largest and
most diverse subfamily in current-day higher plants. It indicates that the DRD1
protein has become an important and possibly diversified asset in the regulation of
plant growth and development. Within the expanded DRD1 subfamily, tomato has
one of the highest member count of all genomes analyzed, whereas potato, even if
higher than average, does not reach this high member count. However, the expan-
sion within this subfamily was not uniform, and while some seem to be unique for
Solanaceae (fig. 3.3, branch b), in other cases, the genome of Arabidopsis carries
two genes whereas potato and tomato have only one.

The DRD1 subfamily tree suggests a complex evolutionary history involving
a series of independent gene losses, duplication and genomic reshuffling events
(recombination, transposition) resulting in a relative expansion of genes in notably
tomato. It suggests that the DRD1 subfamily has gained additional functionality
in tomato. The results suggest that the relative expansion has been specific for
the Solanaceae, although more solanaceous genomes (S. pennellii, N. tabacum,
S. pimpinellifolium) are required to validate the specificity of this expansion for
Solanaceae in general, or for a given species in particular.

It is supposed that the conserved ATPase domain is responsible for the
energy release of DRD1 proteins, whereas other parts of the protein specify inter-
action partners, DNA specificity and/or sub-nuclear localization. The presence of
a disordered region that may be characteristic for the expanded branch b. The dif-
ferences in structure, if any, are so subtle or complex that it is difficult to associate
particular sequence determinants with function. The unfolded regions occur regu-
larly at approximately the same position in the N-terminal regions of DRD1 pro-
teins. Such unfolded regions may help or direct protein-protein or protein-nucleic
acid interactions (Ward et al., 2004; Uversky and Dunker, 2010; Bolanos-Garcia
et al., 2012). Disordered regions in the DRD1 genes may therefore interface the
ATPase domain to other proteins or DNA/RNA molecules (Nguyen Ba et al.,
2012). This may help to specify interaction partners, whereas the lack of accessory
domains indicates that ATPase-mediated remodeling is the main enzymatic func-
tion of these DRD1 subfamily members. New interaction partners could determine
involvement of DRD1 proteins in new biological processes or conditions.
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Given the complex evolution and expression pattern of DRD1 genes in
tomato, it is not as straightforward as for the Snf2 subfamily to transfer the
function of Arabidopsis genes to the orthologous tomato genes. In Arabidopsis,
several genes of this subfamily are important components of RNA-directed DNA
methylation (RADM), the pathway in which specific genomic loci are targeted for
methylation by 24 bases small interfering RNAs (siRNA) (Huettel et al., 2007;
Mahfouz, 2010). RADM operates in many organisms and requires common com-
ponents such as DNA methyltransferases, histone modifying enzymes and RNAi
proteins.

The genes of branch a, AtCLSY1 and AtCHR42 were found in the Pol-1V
polymerase protein complex (Law et al., 2010), the RNA polymerase thought to
initiate the biogenesis of the targeting siRNAs (Pikaard et al., 2008). In the same
complex, AtCHRS1 and AtCHR40 (branch b) are also present, suggesting they
play a role in the same RADM pathway (Law et al., 2011). In addition to siR-
NAs, RADM is also associated with the accumulation of so-called intergenic non-
coding (IGN) transcripts that involves the plant specific RNA-polymerase Pol-V
(Wierzbicki et al., 2008). DRD1 (branch c¢) was identified in a protein complex
critical for the production of Pol-V dependent IGN transcripts (Law et al., 2010).
Recently, this gene was also established as an important player in plant immu-
nity. Its knockout mutant showed increased susceptibility to the fungal pathogen
Plectosphaerella cucumerina (Lépez et al., 2011). The second gene of Arabidop-
sis branch ¢, At2¢21/50, was shown to be modulated during early embryogenesis,
suggesting a role after fertilization (Xiang et al., 2011). Related functions affecting
small RNA accumulation and cytosine methylation have been shown for RMRI,
an Snf2 ortholog in Zea mays (maize), in the context of paramutation (Hale et al.,
2007). As five out of six Arabidopsis DRD1 genes and RMR1 are implicated in
RdDM pathways, a similar function of this subfamily in tomato is likely.

Why tomato would need so much more active DRD1 genes than Arabidop-
sis? Possibly the continued selection for traits in tomato as agricultural crop has
been the driving force for such developments. The functions assigned so far in
Arabidopsis point in the direction of protection against biotic and abiotic stresses.
The comprehensive analysis here presented shows the evolution and presence of
Snf2 genes in plants. Closer evaluation of, e.g. DRD1 subfamily members, could
make suitable targets for breeding and plant improvement.
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Figure 3.S1: Schematic layout of Snf2 family ATPases. The conserved Snf2 family
ATPase region is part of the protein and consists of two Pfam domains, Snf2_ N and
Helicase_ C, in which seven helicase motifs are present. The average size of the Snf2
family ATPase region is approx. 400aa (Eisen et al., 1995). In individual proteins, the
N-terminal or C-terminal region can be very small (Flaus and Owen-Hughes, 2011).
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Figure 3.S2: The number of candidate Snf2 genes in annotated plant genomes. The
total number of genes estimated for a genome is plotted above the bar in the histogram.
Plant species included are organized on the basis of the position in the tree of life (shown
at the left). The four species given most attention in this study (Arabidopsis, potato,
tomato and Mimulus guttatus) are given in black.
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Figure 3.S3: Full phylogenetic tree of all plant Snf2 candidates. The tree is based on the
plant data listed in table 3.52 and calculated with 100 bootstraps due to computational
constraints. Branches with a confidence lower than 50 are marked in grey. Members not
classified (n.c.) into any subfamily are indicated in light green. To increase readability,
the colors of subfamily branches alternate between blue and red.
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Figure 3.S4: Analysis of the Snf2 subfamily in tomato, potato, Mimulus and Arabidop-
sis. The left side shows a detailed view of the DRD1 subfamily branch of an unrooted
tree based on 1000 bootstraps of Snf2 data from Arabidopsis thaliana (Ath), Mimulus
guttatus (Mgu), Solanum lycopersicum (Sly) and Solanum tuberosum (Stu). Confidence
values (50-100) are given at the relevant branches of the tree. Identifiers give the name of
the organism in three-letter abbreviations together with gene identifiers. The individual
branches identified are indicated by letters in lowercase on the right side. To increase
readability, some branch edges have been extended by dotted grey lines. These grey dot-
ted lines are therefore not part of the estimated branch length. The right side shows
structural elements in the protein sequence of the Snf2 subfamily members in Arabidop-
sis, Mimulus, tomato and potato. The individual branches identified are indicated by
letters in lowercase. Besides the ATPase region, BROMO (protein-histone interaction),
QLQ (protein-protein interaction) and HSA (DNA-binding) domains are present in sev-
eral members. A black dot at the right end of the figure indicates the expression of the
respective gene in tomato based on the analysis of RNA-seq data.
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Figure 3.S5: Heat map of the RNA-seq expression data of the tomato DRD1 & Snf2
subfamily genes. The expression is indicated as fragments per kb exon model per million
mapped reads-value (FPKM-value). No cut-off was applied. Grey areas correspond to
FPKM-values of 0. Gene identifiers are indicated on the x-axis with the corresponding
branch name given between brackets. The biological material used to generate the RNA-
seq libraries is given on the y-axis. Replicates are indicated by lowercase letters. Details
on the RNA-seq libraries used are given in table 3.S3.
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Table 3.S1: Primers used for RT-PCR analysis. The primer sequence of the forward (F)
and reversed (R) primer is given for each gene identifier.

DIRECTION

SEQUENCE

GENE ID

l=elie5 l=vile 5 [=v Mic 5=l i~V ilcs i=vlico l=v Mlco = Mo =Cllcs = Rics lb=vMlco i =vIle>

GAAACAGAGAAGCGCATAGTTTT
GTTTTGGAGGTTGGTTACAAGAA
GGAAATTTAAATGACTGTCAGATGG
CAAGTGAATTACAGTGTCCCTTATAC
GAATCTATCAGTTTCGCCGATG
GCTTACGTTCTTTACATTTTCGCTAC
GAGACATAAGTGGCTGTGAGATG
CACTACATCTATGAACAAATGGTGA
CGGTGATGCAGAGTGGAG
GAATATCCCTAAGCTCTTCCAACG
GAGCAAGTACATCTTCCCTCCA
AGGATGAACAGAGATTAGAGACACC
GAAGAAGGGAAAAAGGAGTCAAA
TAACCATCCCCATCTTCTCC
CCACTTGATGTTGATGTTCCTG
ACCTTTTCCCTTAGAACCTCTCC
GGATGGACAGGAAACTAACAACA
CACTACCAACATTGTCACACACA
CCAAAATAAAAAGGAAACGCAGT
CCCAACTTCTCTCTATCTTTTCTTTTC
CTGTAATGGCGTCTCCTGCT
GATTTCCACTGTTGCCTCAAG
GTTCAGGCTTGGCATGGAA
CCGATAAGTGTGATGTCTCTC

Solyc01g068300
Solyc01g068300
Solyc01g068320
Solyc01g068320
Solyc02g033050
Solyc02g033050
Solyc04g054440
Solyc04g054440
Solyc08g077610
Solyc08g077610
Solyc08g077690
Solyc08g077690
Solyc01g060460
Solyc01g060460
Solyc06g050510
Solyc06g050510
Solyc01g109970
Solyc01g109970
Solyc01g094800
Solyc01g094800
Solyc11g062010
Solyc11g062010
Solyc01g079690
Solyc01g079690
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Table 3.S2: Plant data included in the analyses. Sources are the Phytozome annotation
(indicated as genome), SGN unigenes (indicated as unigene), de-novo assembled tran-
scriptomes (indicated as transcript) and reference databases (indicated as database). The
differences in Snf2 members between the annotation (first value) and the homology-based
re-analysis here presented (second value) are indicated for potato (Solanum tuberosum).

NO. OF

SPECIES/ GENOME PREDICTED 1;0‘ QOF DATA
DATABASE  SIZE (MB)  GENE NE TYPE REF.
MODELS MEMBERS
Antirrhinum n/a n/a 0 unigene  Bombarely
majus et al., 2011
Aquilegia 302 24823 36 genome  Goodstein
coerulea et al., 2012
Arabidopsis 230 32670 38 genome  Feuillet
lyrata et al.; 2010
Arabidopsis 125 27416 41 genome  Feuillet
thaliana et al., 2010
Brachypodium 300 26552 41 genome  Feuillet
distachyon et al., 2010
Brassica 530 40905 47 genome  Feuillet
rapa et al.; 2010
Capsella 250 26521 37 genome  Feuillet
rubella et al., 2010
Capsicum 2700 n/a 0 unigene  Bombarely
annuum et al., 2011
Carica 372 27769 17 genome  Feuillet
papaya et al., 2010
Chlamydomonas 112 17114 25 genome  Goodstein
reinhardtii et al.; 2012
ChromDB n/a 8618 377 database  Gendler
(plants only) et al., 2008
Citrus 296 25385 29 genome  Goodstein
clementina et al.; 2012
Citrus 382 25379 23 genome  Feuillet
sinensis et al.; 2010
Coffea n/a n/a 0 unigene  Bombarely
arabica et al.; 2011
Coffea n/a n/a 1 unigene  Bombarely
canephora et al.; 2011
Cucumis 367 21646 27 genome  Feuillet
sativus et al.; 2010
Eucalyptus 600 36376 33 genome  Feuillet
grandis et al., 2010
Glycine 1100 46367 63 genome  Feuillet
max et al.; 2010

Continued on next page
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Table 3.S2 — Continued

NO. OF NO. OF
SPECIES/ GENOME PREDICTED '2 DATA
paTABASE  SIZE (MB)  GENE N TYPE REF.
MODELS MEMBERS
Ipomoea n/a n/a 0 unigene Bombarely
batatas et al., 2011
Linum 350 43471 53 genome Goodstein
usitatissimum et al., 2012
Manihot 770 30666 33 genome Feuillet
esculenta et al., 2010
Medicago 500 50962 23 genome Feuillet
truncatula et al., 2010
Mimulus 430 26718 36 genome Feuillet
guttatus et al., 2010
Nicotiana n/a n/a 0 unigene  Bombarely
benthamiana et al., 2011
Nicotiana n/a n/a 0 unigene  Bombarely
sylvestris et al., 2011
Nicotiana n/a n/a 4 unigene  Bombarely
tabacum et al., 2011
Oryza 433 55986 37 genome Feuillet
sativa et al., 2010
Petunia n/a n/a 0 unigene  Bombarely
hybrid cultivar et al., 2011
Phaseolus 487 26374 37 genome Goodstein
vulgaris et al., 2012
Physcomitrella 480 32273 43 genome Goodstein
patens et al., 2012
Populus 485 40668 47 genome Feuillet
trichocarpa et al., 2010
Prunus 220 27864 34 genome Feuillet
persica et al., 2010
RefSeq n/a 519211 195 database  Pruitt
(plants only) et al., 2012
Ricinus 400 31221 29 genome Feuillet
communis et al., 2010
Selaginella 213 22285 35 genome Goodstein
moellendorffii et al., 2012
Setaria 515 35471 34 genome Feuillet
italica et al., 2010
Solanum n/a 14288 12 transcript  Bombarely
dulcamara et al.; 2011
Solanum 900 34727 44 genome Sato et al.,
lycopersicum 2012
Solanum 1100 n/a 0 unigene  Bombarely
melongena et al., 2011

Continued on next page
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Table 3.52 — Continued
NO. OF NO. OF
Dmate  SE (MB) ope SN2 DL e
MODELS MEMBERS
Solanum n/a 17280 34 transcript Bombarely
peruvianum et al.; 2011
Solanum 840 39031 23/44 genome Feuillet
tuberosum et al., 2010
Sorghum 770 27608 28 genome Feuillet
bicolor et al., 2010
Thellungiella 243 26351 38 genome Goodstein
halophila et al., 2012
Theobroma 430 46143 30 genome Argout
cacao et al., 2011
UniRef100 n/a 591965 46 database = Suzek
(plants only) et al., 2007
Vitis 475 26346 30 genome Jaillon
vinifera et al., 2007
Volvox 131 14971 18 genome Goodstein
carters et al., 2012
Zea 2500 39656 29 genome Feuillet
mays et al., 2010
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Table 3.S3: RNA-seq libraries included in the analysis. Data are from the short read
archive (SRA; http://www.ncbi.nlm.nih.gov/sra). The library and sample IDs refer to

the run and sample identifiers in SRA, respectively.

NAME LIBRARY ID SAMPLE ID
lem (a) SRR404317 SRS291272
lem (b) SRR404318 SRS291272
2cm (a) SRR404319 SRS291273
2cm (b) SRR404320 SRS291273
3cm (a) SRR404321 SRS291274
3cm (b) SRR404322 SRS291274

immature at 17 DPA (a) SRR346617 SRS265321

immature at 17 DPA (b) SRR346618 SRS265321

immature at 17 DPA (c) SRR346619 SRS265321

immature at 17 DPA (d) SRR346620 SRS265321

mature green (a) SRR404324 SRS291275

mature green (b) SRR404325 SRS291275

mature green at 39 DPA (a) SRR346621 SRS265322

mature green at 39 DPA (b) SRR346622 SRS265322

mature green at 39 DPA (c¢) SRR346623 SRS265322

mature green at 39 DPA (d) SRR346624 SRS265322

breaker (a) SRR404326 SRS291276

breaker (b) SRR404327 SRS291276

breaker at 42 DPA (a) SRR346625 SRS265323

breaker at 42 DPA (b) SRR346626 SRS265323

breaker at 42 DPA (c) SRR346627 SRS265323

breaker at 42 DPA (d) SRR346628 SRS265323

10 days after breaker stage (a) SRR404328 SRS291277

10 days after breaker stage (b) SRR404329 SRS291277

fully ripe at 52 DPA (a) SRR346629 SRS265324

fully ripe at 52 DPA (b) SRR346630 SRS265324

fully ripe at 52 DPA (c) SRR346631 SRS265324

fully ripe at 52 DPA (d) SRR346632 SRS265324

leaf (a) SRR404309 SRS291268

leaf (b) SRR404310 SRS291268

root (a) SRR404311 SRS291269

root (b) SRR404312  SRS291269

flower (a) SRR404313 SRS291270

flower (b) SRR404314 SRS291270

flower bud (a) SRR404315 SRS291271

flower bud (b) SRR404316 SRS291271

leaf, root, shoot, flower and fruit tissues (a) SRR346633 SRS265325
leaf, root, shoot, flower and fruit tissues (b) SRR346634 SRS265325
leaf, root, shoot, flower and fruit tissues (c) SRR346635 SRS265325
leaf, root, shoot, flower and fruit tissues (d) SRR346636 SRS265325
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Dataset S1. Text file with custom predicted gene models of Solanum tuberosum.
Dataset S2. Text file of the multiple alignment of all plant Snf2 candidates.

Dataset S3. Phylogenetic tree of all plant Snf2 candidates in NEWICK format.

The supplemental datasets are available as part of the online publication
(DOI 10.1371/journal.pone.0081147).
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Chapter 4

Biological process annotation of
proteins across the plant kingdom

Abstract

Accurate annotation of protein function is key to understanding life at the molec-
ular level, but automated annotation of functions is challenging. We here demon-
strate the combination of a method for protein function annotation that uses net-
work information to predict the biological processes a protein is involved in with a
sequence-based prediction method. The combined function prediction is based on
co-expression networks and combines the network-based prediction method BMRF
with the sequence-based prediction method Argot2. The combination shows sig-
nificantly improved performance compared to each of the methods separately, as
well as compared to Blast2GO. The approach was applied to predict biological
processes for the proteomes of rice, barrel clover, poplar, soybean and tomato.
The novel function predictions are available at www.ab.wur.nl/bmrf. Analysis of
the relationships between sequence similarity and predicted function similarity
identifies numerous cases of divergence of biological processes in which proteins
are involved, in spite of sequence similarity. This shows that the integration of
network-based and sequence-based function prediction is necessary to optimize
the analysis of evolutionary relationships. Examples of potential divergence are
identified for various biological processes, notably for processes related to cell de-
velopment, regulation, and response to chemical stimulus. Such divergence in bio-
logical process annotation for proteins with similar sequences should be taken into
account when analyzing plant gene and genome evolution.

Bargsten, J. W., Severing, E. 1., Nap, J.-P., Sanchez-Perez, G. F., and van Dijk, A. D. J. (2013).
Current Plant Biology, in press.
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1 Introduction

The amount of plant genome data grows disproportional to the amount of avail-
able experimental data on these genomes (du Plessis et al., 2011; De Bodt et al.,
2012; Goodstein et al., 2012; Schatz et al., 2012; Van Bel et al., 2012). To con-
nect this ever increasing amount of genome data to plant biology, structural gene
annotation followed by function annotation is imperative. For example, the identi-
fication of candidate genes involved in a trait-of-interest greatly benefits from gene
function annotation (Monclus et al., 2012). In the context of the study of genome
evolution, gene function annotations are necessary in order to enable comparison
between sets of genes with different evolutionary histories, e.g. those retained vs.
those lost after duplication (De Smet et al., 2013). To annotate gene or protein
function, experimental data, if available, can be used to annotate gene or protein
function. However, the scarcity of experimental data highlights the attractive-
ness of computational approaches to assist in gene function annotation (Rhee and
Mutwil, 2014). Indeed, newly sequenced genomes are in general accompanied by
a function annotation which heavily relies on computational predictions. Such au-
tomated annotations are delivered by a variety of approaches, often without much
knowledge about their reliability. For studying plant genomes and plant genome
evolution, reliable function annotation is therefore a major challenge.

One way to annotate proteins without experimental data is to infer func-
tion from sequence data (du Plessis et al., 2011). The de facto standard to capture
function annotation today is the Gene Ontology (GO), in particular, the Molec-
ular Function (MF) and Biological Process (BP) sub-ontologies (Gene Ontology
Consortium, 2000). MF describes activities, such as catalytic or binding activities,
that occur at the molecular level, whereas BP describes a series of events accom-
plished by one or more ordered assemblies of molecular functions (Gene Ontology
Consortium, 2000). Compared to MF, terms in the BP ontology are generally as-
sociated with more conceptual and abstract levels of function. The prediction of
BP terms can depend on the cellular and organismal context (Radivojac et al.,
2013). Therefore, BP terms tend to be poorly predicted by methods based on
sequence similarity only, such as BLAST (Altschul et al., 1990; Radivojac et al.,
2013). The reliability of BP predictions increases with advanced approaches that
employ e.g. phylogenetic frameworks (Martin et al., 2004; Clark and Radivojac,
2011) or network data such as protein-protein-interactions (Vazquez et al., 2003).

We recently developed a protein function prediction method for BP terms
called Bayesian Markov Random Field (BMRF) (Kourmpetis et al., 2010), which
uses network data as input. In BMRF, each protein is represented as a node
in the network, and connections in the network indicate functional relationships
between proteins. Networks can be based on e.g. protein-protein interactions or co-
expression data. BMRF uses existing BP annotations for proteins in the network
to infer biological processes for unannotated proteins in that network. To do so,
BMRF uses a statistical model describing how likely neighbors are to participate in
the same BP; this constitutes the Markov Random Field. Existing BP annotations
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are used as »seed« or »training« data, providing a set of initial labels for the
Markov Random Field. Parameters in the statistical model are trained using a
Bayesian approach by performing simultaneous estimation of the model parameters
and prediction of protein functions. Importantly, BMRF can transfer functional
information beyond direct interactions. Therefore, it is able to generate function
predictions for proteins that are only linked with other proteins with unknown
function.

In the Critical Assessment of Function Annotations (CAFA) protein func-
tion prediction challenge (Radivojac et al., 2013) BMRF obtained particularly
good performance in human (first place) and Arabidopsis (second place) for BP
term prediction (Radivojac et al., 2013). In these species, BMRF performance
benefits from the wealth of existing function annotation, i.e. experimental data.
Because of its dependence on training data, function annotation for species with
more sparse function annotation is challenging for BMRF. To improve the predic-
tion performance in sparsely annotated species, we present here a strategy to com-
bine BMRF with the sequence-based function prediction method Argot2 (Falda
et al., 2012). Argot2 was among the top performing sequence-based algorithms
in the CAFA category »eukaryotic BP«. In its computational approach Argot2 is
complementary to BMRF, because it is purely sequence-based.

We demonstrate that the combination of Argot2 and BMRF has a markedly
better function prediction performance than each method separately. This inte-
grated method was applied to predict BP terms for proteins in five plant species,
Medicago truncatula (barrel clover), Oryza sativa (rice), Glycine max (soybean),
Populus trichocarpa (poplar) and Solanum lycopersicum (tomato), using microar-
ray co-expression networks as input. Numerous new proteins were associated with
specific biological processes, such as seed development in rice or nitrogen fixation
in Medicago. By comparison between sequence divergence and predicted function
divergence, numerous cases of putative neo-functionalization involving various bi-
ological processes were identified. This new method and the resulting set of pre-
dicted gene functions will be of great value in capitalizing on the large amount of
plant genome data that is currently being generated for the study of the evolution
of genome and gene function.

2 Materials and Methods

2.1 Function prediction methods and their integration

BMRF uses network data as input. Each protein is represented as a node in the
network, and connections in the network indicate functional relationships between
proteins. A statistical model (Markov Random Field) describes how involvement
of a protein in a particular BP influences the probability that its neighbors in
the network are also involved in that BP. The parameters in the statistical model
describe for each BP how strongly neighbors influence each other. Parameter values
are trained using a Bayesian approach by performing simultaneous estimation of
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the model parameters and prediction of protein functions. This strategy needs
a set of known protein functions as initial labeling of the network. Argot2 is a
purely sequence-based prediction method, using searches of the UniProt and Pfam
databases as input. To combine these two methods, two strategies were applied.
In the first integration method, for each biological process, ranks for the different
proteins were obtained from both BMRF and Argot2, by ordering the proteins
based on their score for that process. These ranks were added to obtain a final
ranking, which was used as the prediction score for that biological process. In a
second integration strategy, initial predictions were generated with Argot2. These
were supplied to BMRF as training data, meaning that the initial labeling of the
nodes in the network was based on the Argot2 predictions.

2.2 Sequence and domain data

Sequence data for Arabidopsis, rice, soybean and Medicago truncatula were ob-
tained from the Phytozome database v8.0 (Goodstein et al., 2012). Poplar se-
quence data were downloaded from the JGI (ftp://ftp.jgi-psf.org/pub/JGI_data/
Poplar/annotation/v1.1), annotation version 1.1. Tomato sequence v2.4 and an-
notation v2.3 data (Sato et al., 2012) were retrieved from the SGN network
(http://www.solgenomics.net). Arabidopsis InterPro domains were retrieved from
TAIR10 (Lamesch et al., 2012). Domains of transcript isoforms were merged into
one set per gene.

2.3 Function annotation data

Annotations from the Gene Ontology project, version 1.1418 (Gene Ontology Con-
sortium, 2000), and from Gramene (Youens-Clark et al., 2011), were used as input
for training and cross-validation. Annotations from Oryzabase version 4 (Kurata
and Yamazaki, 2006) were used as an independent validation set. Only genes for
which no annotation was available in the data from the Gene Ontology project
were used for validation. In all cases, only Biological Process (BP) terms with ev-
idence codes IDA (inferred from direct assay), IGI (genetic interaction) and IMP
(mutant phenotype) were used.

2.4 Network data

Co-expression networks based on microarray data for Arabidopsis, rice, Glycine
mazx, Medicago truncatula and poplar were obtained from PlaNet (Mutwil et al.,
2011). For tomato, a recently published microarray-based co-expression network
(Fukushima et al., 2012) was used. The probe ids of the tomato co-expression net-
work were obtained from Affymetrix (http://www.affymetrix.com) and mapped
with BLAST v2.2.26 (Altschul et al., 1990) to the tomato protein sequences.
Further network data for Arabidopsis and rice was obtained from Functional-
Net (http://www.functionalnet.org/) (Lee et al., 2010) and STRING (Szklarczyk
et al., 2011). Arabidopsis yeast-two-hybrid data were acquired from literature
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(Arabidopsis Interactome Mapping Consortium, 2011). The rice-Arabidopsis in-
terspecies network was generated by using BLAST (cut-off on E-value of le-4).
BMRF requires all proteins to be part of the input network. Thus, proteins not
contained in the input network were removed. In all cases, the longest isoform of
alternatively spliced variants was used.

2.5 Validation setup

Performance assessment was performed with rice. HMMER version 3 (http://
hmmer.org/) search against Pfam (Finn et al., 2010) and BLAST (Altschul et al.,
1990) alignment against UniProt (The UniProt Consortium, 2012) were used to
generate the input for Argot2 (Falda et al., 2012). In the context of the validation
setup, all rice proteins were removed from the UniProt database to avoid Argot2
using information from those proteins.

For comparison, sequence similarity-based annotation was carried out with
Blast2GO (Conesa et al., 2005). Rice protein sequences were queried against the
non-redundant part of GenBank (NR) (Benson et al., 2013), using an E-value cut-
off of le-4. In the context of the validation setup, hits to monocot proteins in NR
were removed from the BLAST results before supplying them to Blast2GO.

Prediction runs of different method and network combinations were assessed
with 100 cross-validation runs. In each run, randomly, a subset (n=200) of proteins
was chosen and the annotation was removed (masked). For every run, predicted
functions were compared with the masked ones. Only biological process terms
with at least three masked proteins were used in the performance assessment in
order to allow for sufficient statistics. In the performance assessment, negative
cases consisted of gene-BP associations which were not annotated as such in the
experimental data.

Performance was assessed by the area under the receiver operating char-
acteristic curve (AUC) and the F-score. The AUC is the area under the curve of
1-specificity vs. sensitivity, and is equal to the probability that a classifier will rank
a randomly chosen positive instance higher than a randomly chosen negative one
(Hanley and McNeil, 1982). Specificity is the fraction of proteins experimentally
known not to perform a given function which are indeed not predicted to do so,
whereas sensitivity (or recall) is the fraction of proteins experimentally known to
perform a given function which are indeed predicted to do so. F-score is based
on the precision-recall (precision vs. sensitivity) curve. Precision is the fraction of
proteins predicted to perform a given function which are indeed experimentally
known to do so. The F-score is equal to the harmonic mean of precision and recall,
and the maximum value of the F-score (Fp,.x-score) was used for each biological
process.

To obtain a finite set of predictions, functions of a protein were assigned by
using an F-score-based cut-off. The F-score was calculated per GO term and its
maximum (Fy,.-score), calculated with Arabidopsis data as previously described
(Kourmpetis et al., 2011), was used to set a cut-off on the posterior probability. The
threshold obtained with Arabidopsis data was used in the other species, because
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in those species, too few annotations are available to obtain a species-specific
threshold. All performance measures were calculated with the R-package ROCR
(Sing et al., 2005) and custom R-scripts.

2.6 Application setup

Function annotations predicted for barrel clover, poplar, rice, soybean and tomato
were compared with existing predictions in terms of coverage of proteins and num-
ber of predicted functions per protein. Barrel clover, poplar and rice biological
process predictions were obtained from the official genome annotations version
Mt3.5v5 (Young et al., 2011), v1.1 (Tuskan et al., 2006) and v7.0 (Ouyang et al.,
2007), respectively. Soybean annotation was obtained from Phytozome (Good-
stein et al., 2012). Tomato function annotation data was extracted from the ITAG
annotation v2.3 (Sato et al., 2012).

To determine the total number of proteins and total number of GO terms
for which annotations were obtained, the annotation of each protein was expanded
by including the parent GO terms of all assigned GO terms. For the calculation of
the number of annotations per protein, only the leaf-terms of the Gene Ontology
were included.

2.7 Evolutionary and functional distance calculation

Groups of orthologs were predicted with OrthoMCL (Li et al., 2003). To calcu-
late functional divergence, BMRF posterior probabilities for each protein were
interpreted as vector. The Euclidean distance for each combination of proteins
within a group of orthologs was calculated. The mean of distances within a group
(inner group distance) was used to rank groups of orthologs. For the PAP26 ex-
ample, only groups with existing experimental annotation in Arabidopsis were
taken in to account. The PAP26 tree was estimated with RAxML version 7.2.8-
ALPHA (Stamatakis, 2006) using the PROTGAMMAJTTF substitution model
and 1000 bootstraps. Expression data for PAP26 was obtained from the AtGenEx-
press developmental set (Schmid et al., 2005); publicly available RNA-seq datasets
from tomato (Solanum lycopersicum cv. Heinz 1706; data SRA049915) were re-
trieved from the SRA database (http://www.ncbi.nlm.nih.gov/sra). Reads were
mapped with GSNAP (Wu and Nacu, 2010) against the tomato reference genome
(v. 2.40, Sato et al., 2012) and the expression was determined with cufflinks (Trap-
nell et al., 2010) with default parameters. Soybean expression data was obtained
from SoyBase (Severin et al., 2010). Rice expression data was obtained from the
Rice Genome Annotation Project (http://rice.plantbiology.msu.edu). All expres-
sion experiment data were z-score normalized and percentile ranked to facilitate
comparison. Replicates were merged by averaging over the expression for each
gene.
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3 Results

3.1 Method development and evaluation

We previously developed the protein function prediction method BMRF and used
it to annotate protein function in Arabidopsis thaliana (Kourmpetis et al., 2011).
This method relies, besides on network data, on existing function annotation as
input. For Arabidopsis, we demonstrated that the amount of available annotation
(training) data was sufficient to achieve a good prediction performance (Kourm-
petis et al., 2011). However, for crop species, much less annotation data is available
as input. To increase the overall function prediction performance for plants with
sparse experimental data, we explored combining BMRF with the sequence-based
method Argot2.

Argot2 and BMRF were tested separately (standalone setting) or in two
combinations (fig. 4.1). Performance assessment focused on rice, the crop with
the largest amount of annotation data available: 415 proteins with experimen-
tal evidence for a biological process. The rice network used as input for BMRF
was obtained from a combination of microarray-based co-expression data, data
from STRING (Szklarczyk et al., 2011) and FunctionalNet (Lee et al., 2010) (ta-
ble 4.51). Of the 415 proteins with experimental evidence, 394 were present in the
network, and were used for validation of predicted functions. Function prediction
performance was assessed on the basis of cross-validation, leaving out randomly
selected proteins with known function and comparing the predictions with those
data. The area under the receiver operator characteristic curve (AUC) was used to
compare the performance of the predictions that come as ordered lists of predicted
proteins per biological process. In the standalone setting (fig. 4.1A,B) with rice
sequence and network data, BMRF and Argot2 both have a low performance, with
AUC (average + standard deviation) of 0.6+0.12 and 0.67+0.11, respectively (ta-
bles 4.1 and 4.52). These values are considerably lower than the AUC previously
obtained with BMRF for Arabidopsis (0.75) (Kourmpetis et al., 2011) due to the
small amount of training data (annotated gene functions) that is available for rice.
Assuming information from Arabidopsis would improve the performance of rice
protein function predictions in BMRF, we connected proteins in an available Ara-
bidopsis network (table 4.51) to proteins in the rice network based on sequence
similarity using BLAST. With this rice-Arabidopsis interspecies network in ad-
dition to the networks of both species separately (fig. 4.1C), BMRF performed
slightly better than Argot2 (AUC 0.70£0.12). The precise value of the BLAST
E-value cut-off used to create the interspecies network did not influence the perfor-
mance of BMRF (data not shown). Both methods use complimentary information
about biological processes (network input for BMRF, sequence input for Argot2).
Therefore, we tested combining the two. Argot2 and BMRF can be combined in
multiple ways. We used a simple rank-based approach to predict biological pro-
cesses by ordering Argot2 and BMRF results separately and then combining their
ranks to produce a final rank (fig. 4.1D). This integration was performed for each
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Figure 4.1: Strategies for predicting protein function. BMRF (A,C) and Argot2 (B)
were used in a standalone setting or in two different combinations (D,E). Combining
BMRF and Argot2 was done by combining the results of each of the two methods (D),
and by using Argot2 predictions as input for BMRF (E). The rice network is indicated in
red, the Arabidopsis network in black and interspecies connections in grey dashed lines.
Sequence-based input is indicated by a DNA-helix symbol.

biological process separately by sorting the proteins based on their score for that
process and using the sum of the ranks induced by this ordering for BMRF and for
Argot2. This integration of Argot2 and BMRF did not improve results compared
to standalone BMRF (table 4.1). Performance was markedly improved, however,
by generating initial predictions with Argot2 and supplying these to BMRF as
training data (seed data; fig. 4.1E). In this integration method, the initial labeling
of proteins in the network (i.e. the seed data for BMRF'), was based on the Argot2
predictions. Argot2 uses an algorithm-specific score to rank its results and requires
a threshold for such a score. To assess the influence of different thresholds on the
performance of BMRF, BMRF was seeded with 5 different output sets of Argot2
(table 4.S3). The best performance was achieved with the default threshold of 5.
The results above indicate that our integrated method performed markedly
better than each of the two methods separately. As additional assessment of
performance, we predicted annotations with the often-used method Blast2GO
(Conesa et al., 2005). The resulting AUC of Blast2GO was 0.72+0.13, and the
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Table 4.1: Prediction performance for rice protein function of various combinations of
methods and input datasets.

NETWORK METHOD® AUC?
(A) Rice only BMRF  0.60 (0.12)
(B) Rice only Argot2  0.67 (0.11)
(C) Arabidopsis & rice combined BMRF 0.70 (0.12)
(D) Arabidopsis & rice combined Blast2GO  0.72 (0.13)
(E) Arabidopsis & rice combined ~ Argot2 + BMRF  0.71 (0.12)
(F) Arabidopsis & rice combined Argot2 — BMRF  0.83 (0.15)

% Methods analyzed were BMRF, Argot2, Blast2GO, Argot2 + BMRF (rank sum)
and Argot2 — BMRF (seeding). Rice network was used separately (rice only), or it
was connected to an Arabidopsis network based on sequence similarity (combined).

b Area under the curve; mean (standard deviation).

AUC of the combined Argot2-BMRF predictions was 0.834+0.15 which is signif-
icantly (p < 1071°; Mann-Whitney U) better than Blast2GO (fig. 4.2A). The
small number of experimentally verified annotations (true positives) and high
number of unannotated proteins (true negatives) could introduce a skew in the
cross-validation sets, leading to a bias in the AUC performance assessment (Davis
and Goadrich, 2006). The F-score (harmonic mean of precision and recall) does not
suffer from this skew and the final prediction performance was therefore also as-
sessed with the maximum F-score (Fyax-score). In agreement with the AUC eval-
uation, the Fax-scores of Argot2-seeded BMRF (0.56+0.24) were significantly
better (p < 107!%; Mann-Whitney U) than Blast2GO (0.51£0.23). Visual in-
spection of a histogram of AUC values and of F,,.«-score values for different BP
terms in different cross-validation runs confirms the performance difference be-
tween the combined Argot2-BMRF predictions and Blast2GO (fig. 4.2B,C). To
obtain independent validation in addition to the cross-validation performed above,
the Argot2-seeded BMRF predictions were compared to annotations available in
the Oryzabase database (Kurata and Yamazaki, 2006), which were not present in
our input data (71 proteins). The AUC of 0.884+0.13 we obtained was similar to
the AUC obtained in the cross-validation, confirming the performance assessment.
Overall, the performance evaluation demonstrates that Argot2-seeded BMRF is an
effective way to predict BP protein function in sparsely annotated plant genomes.

3.2 Application to crop species

Argot2-seeded BMRF using PlaNet (Mutwil et al., 2011) co-expression networks
as input (table 4.54) was applied to predict BP protein functions in a selection of
model and crop plants comprising Oryza sativa (rice), Medicago truncatula (barrel
clover), Glycine maz (soybean), Populus trichocarpa (poplar) and Solanum lycop-
ersicum (tomato). The posterior probability of a protein associated with a certain
GO term was estimated for all GO terms and all proteins in the network. In or-
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Figure 4.2: Performance assessment of function prediction on rice proteins. (A) Receiver
operator characteristic curve showing 1-specificity vs. sensitivity of the predictions of
Argot2-seeded BMRF and Blast2GO. Specificity and sensitivity were averaged over all
cross-validation runs. Dots indicate evenly spaced intervals of the underlying prediction
score, line represents complete curve. Performance is summarized as AUC which is the
area under these curves. (B) Histogram of AUC values per GO term of every cross-
validation run calculated for Argot2-seeded BMRF and Blast2GO. (C) Histogram of
Fmax values per GO term of every cross-validation run calculated for Argot2 seeding
BMRF and Blast2GO.

der to answer a question such as »does protein X perform biological process Y«,
a finite set of predictions is needed. To obtain such finite set, an F-score-based
cut-off was applied to the posterior probability. As Arabidopsis has the highest
coverage of experimental data, this cut-off was adjusted per GO term by com-
paring Arabidopsis predictions with available experimental data, as previously
described (Kourmpetis et al., 2011): for each GO term, a threshold on the pos-
terior probability was defined that results in the maximum F-score for that GO
term. All predictions are available online (http://www.ab.wur.nl/bmrf/). The on-
line resource can be queried for predictions of proteins or for GO terms of interest,
and the results can be downloaded in bulk. Queries can be based on protein iden-
tifiers, biological process GO identifiers, or text descriptors of biological processes
(fig. 4.3). The fraction of proteins out of the complete proteome annotated with
at least one biological process (annotation coverage) varies considerably between
the species: rice shows the highest annotation coverage (99%), followed by poplar
(77%). Soybean (43%) and barrel clover (39%) show lower coverage. Tomato has
the lowest coverage (12%). Such differences in annotation coverage can have at
least two reasons. First, although for every biological process every protein in the
input network will have an associated posterior probability, these probabilities can
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AT2G27710 GO0:0000003 root hair elongation
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Figure 4.3: Use case scenarios for the web interface. Argot2-seeded BMRF results can
be queried in two ways. (A) Protein identifiers as query input. The result consists of
predicted GO terms for each protein. (B) GO terms (or GO term descriptions) as query
input. The result consists of predicted protein identifiers for the relevant GO term(s) and
associated posterior probabilities (prob).

be below the F-score-based cut-off. This means that not necessarily every protein
in the input network will be annotated. In addition, because BMRF only predicts
functions for proteins in the input network, the maximum possible annotation cov-
erage is limited by the number of proteins in the respective network. This limit is
reflected by the tomato annotation coverage, as the tomato network is the smallest
with 4355 proteins. With exception of soybean, the annotation coverage correlates
with the number of proteins in the respective network (table 4.54).

To investigate differences between available gene function annotation data
and Argot2-seeded BMRF, we compared the results with existing protein function
predictions from the reference genomes of barrel clover (Young et al., 2011), poplar
(Tuskan et al., 2006), tomato (Sato et al., 2012), rice (Ouyang et al., 2007) and
soybean (Schmutz et al., 2010). Except for tomato, the existing annotations have
a much lower coverage than the above mentioned coverage obtained by Argot2-
seeded BMRF (table 4.S5). The increase of percentage of number of proteins with
at least one biological process predicted by our approach varied per species. The
percentage increase ranged from ~60% for rice (24,160 in existing annotation vs.
38,998 in our annotation) to over 100% for poplar (13,682 vs. 32,119).

To complement the above presented results on coverage, which focused on
the question how many proteins obtain at least one annotation, we also compared
the number of predicted functions per protein. The average number of GO terms
per protein in the available experimental annotation data for Arabidopsis is 4.4. As
additional experimental evidence is supposed to accumulate, this number should be
regarded as a lower bound of the average real number of GO terms a protein should
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be annotated with. Existing sets of predicted annotations for the plant species
included here are considerably below this bound, whereas our set of predictions is
relatively close to this bound (table 4.S5). Note that in this assessment, only the
most granular level of the Gene Ontology is taken into account (i.e. only leaf-node
terms are considered, and not more general parent terms). For those proteins for
which existing annotations are available, these annotations are to a large extent
a subset of what we predict (~80% of the existing annotations is also predicted
by Argot2-seeded BMRF; data not shown). The higher annotation coverage in
combination with the good prediction performance demonstrates the appreciable
added value of the Argot2-seeded BMRF strategy for obtaining gene function
annotations.

3.3 Predicted protein functions: showcases

To illustrate the potential of the functions predicted, we screened all predictions
for newly annotated biological processes that are considered particularly relevant
for the individual species (table 4.S6). Biological processes considered comprise:
seed development for rice and soybean; nitrogen fixation for barrel clover; fruit
development for tomato; and lignin related processes for poplar. Inspection of the
selected predictions shows that the functions of proteins tend to become more
specific: broadly defined functions are replaced by or augmented with more spe-
cific biological processes. For example, the rice protein LOC_ Os10g38080, was
previously annotated with anatomical structure morphogenesis, and is annotated
by Argot2-seeded BMRF with seed (coat) development. LOC_Os10g38080 is a
subtilisin homolog, which according to available RNA-seq data is expressed in
amongst other reproductive organs and seeds (Ouyang et al., 2007). As additional
evidence for the Argot2-seeded BMRF prediction, in Arabidopsis subtilisin and re-
lated proteases are involved in seed coat development (Rautengarten et al., 2008).
An example for an annotation for a previously completely unannotated protein is
LOC__0s05g02520, a cupin domain containing protein, which was annotated by
Argot2-seeded BMRF with seed maturation.

3.4 Divergence and conservation of biological processes in
ortholog groups

The set of function predictions delivered above allows to compare function anno-
tation between different plants, a task which is much less easily performed with
existing annotations that are derived from various methods and that have a much
lower coverage than our approach. Such comparison between orthologous genes in
different plants allows to assess the limits of orthology-based function prediction,
and to analyze gene function evolution.

To characterize ortholog groups with functional predictions that differ from
expectations based on sequence similarity, orthologs and paralogs were identified
with OrthoMCL (Li et al., 2003), resulting in 25,347 groups (table 4.57). Group
members for which no functions were predicted were removed. To assess the simi-
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larity of function predictions within ortholog groups, the mean functional distance
within each ortholog group (dubbed »inner group distance«) was calculated (see
section 2). In case the predicted biological processes in such a group are different
despite high sequence similarity, this would be indicative of evolutionary diver-
gence by, e.g. neo-functionalization. To identify such cases, groups with at least
four different organisms (6,073) were ranked by their largest inner group distance
and the most divergent groups (n=100) were selected. In those groups, biologi-
cal processes that were significantly overrepresented (more present than randomly
expected) were obtained. A variety of biological processes was found (fig. 4.S1),
indicating the widespread occurrence of changes in biological processes proteins
are involved in. Most prominent are processes related to cell development, regula-
tion, and response to chemical stimulus. For the latter group, biological processes
involved are shown in fig. 4.4A.

Among the top ranking groups (with highest »inner group distance«) in-
volved in those processes, we chose as example a phosphatase with existing experi-
mental annotation in Arabidopsis, PURPLE ACID PHOSPHATASE 26 (PAP26).
PAP26 plays a role in the phosphate metabolism (Hurley et al., 2010) and phos-
phate starvation (Hurley et al., 2010) in Arabidopsis. The majority of the proteins
with function predictions in the orthologous group (five out of seven) are indeed
predicted by Argot2-seeded BMRF to be involved in phosphate metabolism or the
response to phosphate starvation. However, additional function predictions differ.
Populus and soybean proteins are predominantly annotated with cell death related
terms; Arabidopsis with pollination and pollen germination processes; tomato with
DNA repair and rice with microtubule cytoskeleton organization. This diversity in
function is not reflected by orthology predictions and phylogenetic relationships
of the group members (fig. 4.4B,C). Independent expression data indicates that
Arabidopsis PAP26 is expressed in a housekeeping-like manner, but the expression
pattern varies between paralogs in other species, e.g. soybean, and to a lesser extent
orthologs, e.g. between tomato and soybean (fig. 4.4D). The different expression
patterns give credibility to the variation in function predictions of Argot2-seeded
BMRF. This indicates that PAP26, although its molecular function presumably
is invariant, is involved in various biological processes in various plant species.
More generally, the analysis of functional divergence presented here highlights the
potential of using our set of predicted gene functions for large scale comparisons
between various plant species.
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Figure 4.4: Comparison between sequence divergence and functional divergence.

(A) Overview of the most frequent GO terms in the top 100 most functionally divergent
ortholog groups that are represented by »response to chemical stimulus« (fig. 4.51). (B-
C) Phylogenetic relations of Arabidopsis PURPLE ACID PHOSPHATASE 26 orthologs.
Trees contain Arabidopsis (ath), soybean (gma), tomato (sly), Populus (ptr) and rice
(osa) PAP26 orthologs. (B) Unrooted phylogenetic tree based on sequence data. The tree
was calculated with 1000 bootstraps. Confidence values are indicated at the branches
in per cent. (C) Distance tree based on our function predictions. Missing identifiers
were not part of the co-expression network and are therefore not part of the functional
distance tree. (D) Expression ranking of PURPLE ACID PHOSPHATASE 26 orthologs
and paralogs in different tissue clusters. The heatmap color represents a mean percentile
rank of normalized expression studies aggregated by averaging to ten tissue clusters
(table 4.S8). Missing data is indicated in white. An overview of the aggregated studies is
available in table 4.S8.
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4 Discussion

Finding associations between proteins and biological processes is a major chal-
lenge in non-model plants. Most experimental studies are aimed towards model
organisms, hence experiment-based function annotation is sparse in the remain-
der of sequenced plant genomes. High-throughput experiments to define protein
functions are overall less informative than those provided by low-throughput ex-
periments (Schnoes et al., 2013). Moreover, the experimental setup in large-scale
approaches might restrict the type of function annotation that can be obtained. An
example is the characterization of overexpressed rice genes in Arabidopsis (Saku-
rai et al., 2011) to infer function. Here, the problem is that the biological process
of a protein is often bound to the local environment or a specific condition and a
different (plant) environment might change the outcome. Another large scale anal-
ysis of gene families in Arabidopsis used prokaryotic gene information to predict
function (Gerdes et al., 2011). This semi-manual approach yielded good results
for conserved gene families; however, gene families with low conservation were not
covered.

Several computational approaches to protein function annotation exist, al-
beit mostly not targeted to plants, or to model plant species only (Lee et al., 2011).
An integrated platform such as Phytozome (Goodstein et al., 2012) provides a con-
sistent set of Gene Ontology annotations for various plant species and hence over-
comes the above-mentioned problem that annotations associated with genomes
are obtained by various methods. However, Phytozome only provides sequence-
based predictions. The recently published MORPH algorithm ranked genes for
their membership of Arabidopsis and tomato pathways, based on a set of known
genes from the target pathway, a collection of expression profiles, and interaction
and metabolic networks (Tzfadia et al., 2012). Approaches such as PlaNet con-
struct networks based on expression data (Mutwil et al., 2011), but such networks
do not directly lead to gene function annotation. Similarly, a recently presented
text mining approach generated networks in Arabidopsis and not gene function
annotations (Blanc and Wolfe, 2004). Here we provide a structured approach to
extract gene function information from networks and combine that with sequence-
based information.

The combination of sequence- and network-based function prediction ob-
tained by seeding BMRF with Argot2, offers a significant benefit over applying
these methods separately. We validated the method in rice and demonstrated
greatly improved performance compared to each of the methods separately and
compared to Blast2GO. This performance assessment was performed using two
complementary indicators, AUC and F-score, which both gave consistent results.
Existing annotations provided for the plant genomes to which we applied our
method have been obtained by various, mostly sequence-based approaches. A clear
description of the methods and input data is often lacking, leading to the risk of
error propagation and circular reasoning (du Plessis et al., 2011; Engelhardt et al.,
2011). Our approach has the benefit of applying a standard method to the vari-
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ous genomes. Moreover, for many proteins which so far were not associated with
any biological process, we now provide predictions of biological processes. Nev-
ertheless, the combination of Argot2 and BMRF is indirectly constrained by the
experimental data in databases such as UniProt (Dimmer et al., 2012) or Pfam
(Finn et al., 2010), and by the proteins covered in available networks. It will how-
ever be straightforward to integrate newly available datasets such as additional
co-expression networks or novel gene function annotations in the framework pre-
sented. An additional limitation of our current approach is that the structure of the
Gene Ontology is not taken into account in the prediction process. Most existing
computational methods for gene function prediction suffer from this drawback. It
is feasible to make a set of GO term predictions consistent with the GO-structure
(Kourmpetis et al., 2013) and we plan to apply this method to Argot2-seeded
BMREF predictions in the future.

BMRF output consists of a list of probabilities for each gene to be asso-
ciated with each biological process. This allows to rank proteins in order of their
likelihood of association with a biological process of interest. However, it can also
be important to have a finite set of predictions. To provide that, we applied a cut-
off to the probabilities, based on Arabidopsis, the only species from which enough
data was available. It is difficult to assess how valid the application of this cut-off
in other plant species is. However, the average number of predictions per protein
that we obtain in each of the species based on the cut-off that was applied is close
to the observed average for Arabidopsis, giving some credibility to this cut-off. For
one species, tomato, the number of predicted BP terms per protein is somewhat
higher than the experimentally observed number for Arabidopsis. Hence, Argot2-
seeded BMRF possibly suffers from overprediction in this case. This could possibly
be caused by the higher density (number of interactions compared to number of
proteins) of the tomato network. However, in any case, the probabilities associ-
ated with the predictions allow narrowing down the prediction results to the most
reliable ones, if so desired.

With the consistent annotation of multiple plant genomes that we per-
formed, the relation between homology and biological process predictions can be
analyzed. Ortholog groups with divergent functions indicated cases where con-
clusions based on sequence similarity might be inappropriate. Such inappropriate
conclusions may be more common than generally acknowledged. For example,
about half of a collection of Arabidopsis loss-of-function mutants had only low or
moderate phenotypic similarity with mutants of putative orthologs in tomato, rice
or maize (Lloyd and Meinke, 2012). Large scale evolutionary comparisons between
plant species, for example aimed at identifying patterns in retention of duplicated
genes (Guo et al., 2013; Jiang et al., 2013) or functional biases in single-copy genes
(De Smet et al., 2013), are currently performed based on function annotations
obtained using sequence similarity. Such studies will benefit from the gene anno-
tations presented here, which overcome the limitations of purely sequence-based
annotation of gene functions.
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In the example of the PAP26 homologs, homology captures the molecu-
lar function, but at the biological process level there is divergence. Our integrated
sequence- and network-based function annotation method allows to predict such di-
vergent biological processes. Differences in expression between the different PAP26
homologs in different species provide additional evidence for our function predic-
tions. More generally, the results on biological process divergence are in line with
the concept that evolution acts in particular by »tinkering« with genes, coopting
available components of a genome for new processes.

The combination of sequence-based and network-based predictions is a huge
improvement for sparsely annotated plant genomes. With the advent of RNA-
seq (Marguerat and Béhler, 2010) co-expression network-based protein function
prediction can become a preferred method. Combined with additional analysis,
such as genome-wide association studies (GWAS), potential candidate genes for
traits-of-interest could be identified more reliably. Such candidate genes will be
of great help in applications related to plant breeding. The ability to associate
unannotated proteins to particular biological processes will spark experimental
work and be essential for the advancement of understanding of gene function in
plant genome evolution.
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Table 4.S1: Overview of networks used in the validation setup. Networks used in BMRF
were obtained for Arabidopsis (Ath) and rice (Osa) from PlaNet (Mutwil et al., 2011),
STRING (Szklarczyk et al., 2011), FunctionalNet (RiceNet & AraNet) (Lee et al., 2010)
and the Arabidopsis interactome (Arabidopsis Interactome Mapping Consortium, 2011).

ToTAL ANNOTATION

NETWORK

proteins edges proteins GO terms  annot.
Arabidopsis
STRING 10397 125877 3518 3119 99524
Interactome 4866 11374 1737 2436 53513
Rice
STRING 6061 45015 206 558 4619
RiceNet 18377 588221 323 735 7406
Planet & STRING & 38998 2163770 394 757 9114
RiceNet
Interspecies (combined)
STRING (Osa, Ath),
RiceNet, AraNet,
Planet (Osa, Ath), 60637 2970760 4813 3364 127601

Ath interactome;
subnetworks connected
with BLAST

Table 4.S2: Comparison of dependence of BMRF performance on rice input networks.
BMRF was tested on different rice input networks with 100-fold cross-validation. The
performance of Argot2 was compared on the same cross-validation sets as BMRF. Rice
networks used in BMRF were obtained from PlaNet (Mutwil et al., 2011), STRING
(Szklarczyk et al., 2011) and FunctionalNet (RiceNet) (Lee et al., 2010). For other plant
species, in general only co-expression networks are available. Importantly, for rice, the
performance did not depend much on the input network used.

NETWORK  ALGORITHM AUCe

. BMRF  0.64 (0.11)

RiceNet Argot2  0.64 (0.09)

BMRF  0.65 (0.14)

STRING Argot2  0.65 (0.13)

. BMRF  0.60 (0.12)

Planet, STRING and RiceNet Argot2  0.67 (0.11)

2Area under the curve; mean (standard deviation).
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Table 4.S3: Prediction performance of Argot2-seeded BMRF at different Argot2 thresh-
olds.

THRESHOLD AUC®
5 0.83 (0.15)

200 0.81 (0.16)

500 0.81 (0.17)

1000 0.79 (0.17)

2000 0.7 (0.17)

%Area under the curve; mean
(standard deviation).

Table 4.S4: Size of input networks for the application setup.

NETWORK PROTEINS IN THE PROTEOME PROTEINS IN NETWORK EDGES
Rice® 39,049 38,998 2,163,770
Medicago® 44,135 17,464 425,587
Soybean® 54,175 25,113 951,419
Poplar® 41,335 32,119 566,012
Tomato® 34,727 4,355 910,171

“Planet co-expression network (Mutwil et al., 2011)
bTomato microarray co-expression network (Fukushima et al., 2012)
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Table 4.S6: Top five predictions for the respective plant relevant biological processes.

Cases discussed in the main text are underlined.

ORGANISM GO-TERM PROTEIN ID PROB.
Glycine max seed development Glyma05g30000 0.999
(G0:0048316) Glyma09g02750 0.999
Glymalbg13640 0.999
Glyma03g01860 0.998
Glyma08g21610 0.998
Medicago truncatula nodulation Medtr3g040210 0.988
(G0O:0009877) Medtr3g040300 0.987
Medtr3g040320 0.986
Medtrdg081350 0.986
Medtr4g039010 0.984
Oryza sativa seed coat development LOC__0Os01g64850 1
(GO:0010214) LOC_0Os10g38080 1
LOC_0s04g47160 1
LOC_0s02g53850 1
LOC_0s02g53970 1
seed maturation LOC__0s05g02520 0.999
(GO:0010431) LOC_0s02g15169  0.998
LOC_0s02g16820  0.998
LOC_0s01g74480  0.996
LOC_0s08g03410  0.995
seed development LOC_0s01g64850 1
(G0:0048316) LOC_0Os10g38080 1
LOC_0s04g47160 1
LOC_0s02g53850 1
LOC_0s02g53970 1
Populus trichocarpa cytokinin metabolic Potri.011G159600 0.967
process (G0O:0009690) Potri.011G137800  0.956
Potri.008G084800 0.86
Potri.001G462200 0.852
Potri.002G178300 0.851
cytokinin biosynthetic ~ Potri.011G137800 0.956
process (G0O:0009691) Potri.012G142000  0.767
Potri.011G001300 0.711
lignin metabolic Potri.008GG064000 1
process (G0O:0009808) Potri.007G023300 1
Potri.005G247700 1
Potri.001G219300 1
Potri.009G034500 1

Continued on next page
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Table 4.56 — Continued

ORGANISM GO-TERM PROTEIN ID PROB.
Populus trichocarpa lignin biosynthetic Potri.016G112100 1
process (GO:0009809) Potri.006 G087500 1
Potri.008G064000 1
Potri.009G034500 1
Potri.005G200700 1
Solanum lycopersicum fruit development Solyc01g073860 1
(GO:0010154) Solyc01g073820 1
Solyc01g073880 1

Solyc04g007000 0.989

Solyc11g073210 0.987
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Table 4.S7: Overview of OrthoMCL groups. Organisms present in a group are indicated
by a dot. The number of groups possessing the marked organisms are given either directly
from the OrthoMCL analysis or after filtering for proteins present in the interspecies
network. Note that if due to the filtering no proteins from a given species remain, the
total number of species present in the group will decrease. Groups with four or more
organisms after filtering were used in further analysis.

ORGANISMS DISTINCT  ORTHOMCL  GROUPS

Ath  Gma® Mor®  Osa®  Put Sl yf ORGANISMS GROUPS IN NET
hd b4 hd 4 4 L4 6 7055 336
b d i L d L4 5 247 497
i L4 L4 L4 L 5 313 35

hd b4 hd 4 L4 5 84 140
b d L d L4 L4 5 2193 1253
[ ] [ ) [ ) [ ) [ ) 5 24 24
b L4 i L4 L4 5 1156 32
b L4 L L4 4 20 302
i L4 L4 L 4 477 91
o L4 L4 L4 4 82 127
L4 L L4 L 4 384 7

i L4 L4 L 4 133 162

° ° ° ° 4 2 79
b d L4 L4 4 96 2046
4 L4 L4 L 4 30 33

4 L4 L4 L4 4 78 86

[ ) [ ) [ ) [ ) 4 9 9

i L4 L4 4 275 85
o L4 L4 L4 4 31 692
[ ] [ ) [ ) [ ) 4 6 ]_8
i L4 L4 L 4 72 16
° ° ° ° 4 18 3
b L4 d 3 71 60
i L4 L4 3 22 1577
d 4 L4 3 133 446
L L4 L4 3 16 149

L4 L4 L4 3 37 28

o L4 L4 3 179 47

L L L4 3 105 11

i 4 L4 3 1 99
o L4 L4 3 282 45

Continued on next page
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Table 4.S7 — Continued

ORGANISMS DISTINCT ORTHOMCL  GROUPS

Ath®  Gma®  Mir°  Osa® Pt Slyf ORGANISMS GROUPS IN NET
L L4 L4 3 3 42

b L 3 45 66

o L4 L4 3 13 108
d L4 L4 3 38 431

hd L4 ° 3 130 33
L4 L4 L4 3 10 1

° L4 L4 3 39 478
[ ) [ ) [ ] 3 6 5

° b L4 3 7 46
° L4 o 3 7 10
hd o 3 53 94

L4 L4 2 47 501

L] L] 2 242 358

hd L4 2 38 566
L4 L4 2 976 169

L4 o 2 67 37

L4 L4 2 49 274

o ° 2 45 34
4 L4 2 14 64

L4 o 2 186 29

o L4 2 58 379
° 2 143 336
L4 L4 2 27 61

L d ° 2 92 38

4 o 2 49 2

hd L4 2 13 51
L 1 2329 1151

o 1 1135 109

° 1 2080 2431

[ 1 841 986
[ 1 1706 1453

L4 1 1228 1128

Total 25347 20006

@ Arabidopsis thaliana
bGlycine maz
¢Medicago truncatula
40ryza sativa

¢ Populus trichocarpa
fSolanum lycopersicum
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Table 4.S8: Overview of the tissue types used in the expression ranking of PAP26
homologs.

ORGANISM TISSUE CLUS-  LIBRARY REFERENCE
TER
Arabidopsis thaliana floral organs ATGE_34 Schmid et al., 2005

floral organs ATGE_ 35
floral organs ATGE_ 36
floral organs ATGE_ 37
floral organs ATGE_40
floral organs ATGE_ 41
floral organs ATGE_ 42
floral organs ATGE_43

flowers ATGE_31
flowers ATGE_ 32
flowers ATGE 33
flowers ATGE_ 39
leaf ATGE 1

leaf ATGE 10
leaf ATGE 12
leaf ATGE 13
leaf ATGE 14
leaf ATGE 15
leaf ATGE 16
leaf ATGE 17
leaf ATGE 19
leaf ATGE 20
leaf ATGE 21
leaf ATGE 25
leaf ATGE 26
leaf ATGE 5

pollen ATGE 45
pollen ATGE 73
root ATGE 3

root ATGE_9

shoot apex ATGE_29
shoot apex ATGE_4
shoot apex ATGE_6
shoot apex ATGE_S8

stem ATGE_2
stem ATGE_27
stem ATGE_ 28

Continued on next page
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Table 4.S8 — Continued

ORGANISM TISSUE CLUS-  LIBRARY REFERENCE
TER
Arabidopsis thaliana whole plant ATGE_ 22
whole plant ~ ATGE_ 23
whole plant  ATGE_24
whole plant ATGE_7
Glycine mazx flowers Flower Severin et al., 2010
leaf young_ leaf
root Root
seeds pod.shell. 1I0DAF
seeds pod.shell.14DAF
seeds seed.10DAF
seeds seed.14DAF
seeds seed.21DAF
seeds seed.25DAF
seeds seed.28DAF
seeds seed.35DAF
seeds seed .42DAF
stem Nodule
whole plant  one.cm.pod
Oryza sativa floral organs OSN__AD Ouyang et al., 2007
floral organs OSN__AE
flowers OSN_AB
flowers OSN_AC
leaf OSN_AA/
OSN_CA*
seeds OSN_AF
seeds OSN_AG
seeds OSN__AH/
OSN_BH*
seeds OSN AK
shoot apex SRR042529
whole plant  SRX016110

Continued on next page
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Table 4.S8 — Continued

ORGANISM

TISSUE CLUS-
TER

LIBRARY

REFERENCE

Solanum lycopersicum

flowers

flowers

fruit

fruit

fruit

fruit

fruit

fruit

fruit

fruit

fruit

leaf

leaf

root

SRRA404314/
SRRA404313°
SRR404316/
SRRA404315°
SRR404318/
SRR404317°
SRRA404320/
SRR404319°
SRR404322/
SRR404321°
SRRA404325/
SRR404324°
SRRA404327/
SRRA404326"
SRRA404329/
SRRA404328°
SRR404333/
SRRA04331°
SRR404336/
SRRA404334°
SRR404339/
SRR404338"
SRR404310/
SRR404309°
SRR412748/
SRRA12747°
SRRA404312/
SRRA404311°

Sato et al., 2012

“Biological replicate
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Chapter 5

Less is more: pruning nodes from
a biological network can improve
prediction of protein function

Abstract

Incorporation of biological networks by using algorithms such as Bayesian Markov
Random Field (BMRF) is valuable for the prediction of biological processes that
proteins are involved in. The topological properties that influence prediction per-
formance in such networks are however largely unknown. Here we evaluate the
performance of BMRF upon progressive removal of highly connected hub nodes
(pruning). Three different protein-protein interaction networks with data from
Arabidopsis, human and yeast were analyzed. All three show that the average
prediction performance can improve significantly. Hub nodes apparently hamper
prediction. The functional similarity between hub nodes connected to non-hub
nodes is smaller than that of non-hub — non-hub connections. The prediction of
more specific biological processes is more likely to benefit from node pruning. A
major issue in performance of BMRF by pruning is the amount of annotation used
in and/or left for the prediction. Because the prediction relies on existing annota-
tion, the optimal number of pruned nodes varies between networks. As a result,
the optimal pruning size will have to be determined for each network separately.

Bargsten, J. W., Sanchez-Perez, G. F., Nap, J.-P. and van Dijk, A. D. J., in preparation.



CHAPTER 5

1 Introduction

Prediction of the functions of a protein is a major challenge in current biology. Due
to the avalanche of sequenced genomes, the number of protein sequences is increas-
ing exponentially. To date, more than 98% of all functions assigned are predicted
without being experimentally verified (du Plessis et al., 2011; Rhee and Mutwil,
2014). Experimental annotation of function is not only lagging far behind, experi-
mental annotations presented in publications are also not machine readable, thus
not easily accessible. To make annotations machine-readable, the Gene Ontology
Consortium (Gene Ontology Consortium, 2000) created a controlled vocabulary
(ontology) of GO-terms to standardize annotation. The vocabulary is divided into
three domains, molecular function (MF), biological process (BP) and cellular com-
ponent (CC). Notably BP terms are challenging to predict, because the sequence
of a protein is only a moderate proxy for the transfer of functional annotation on
this level (Radivojac et al., 2013).

Additional information about the relationship between proteins (or genes),
in the form of protein-protein-interactions (PPIs) or co-expression data, provides
a valuable resource for predicting BP terms (Sharan et al., 2007; Ryan et al.,
2013). Nearly all function prediction that uses such information is based on the
premise that modular structures such as protein complexes, signaling cascades or
transcriptional regulatory circuits, represent biological properties, and as a con-
sequence allow the transfer of functional information (Gillis and Pavlidis, 2012;
Mitra et al., 2013)

The sum of interactions between biological units (proteins, genes or other-
wise) is commonly referred to as »biological network«. A biological unit in such
a network is referred to as »node« and a connection between two nodes is re-
ferred to as »edge«. Biological networks possess characteristic topological proper-
ties (Barabdsi and Oltvai, 2004). Typically, biological networks can be decomposed
into multiple organizational levels. In most cases, three organizational levels can
be distinguished. At the lowest level, nodes are aggregated into network motifs,
which aggregate into network modules at the second highest level. At the high-
est level, modules are connected by a small number of highly connected nodes,
generally known as »hub« nodes (Vital-Lopez et al., 2012). To capture the role of
a node in the network, so-called centrality measures are used. The simplest cen-
trality measure to calculate is the number of connections of a node, also known
as node degree (Borgatti and Everett, 2006). Other common centrality measures
are betweenness, eccentricity, local cluster coefficient or closeness (Borgatti and
Everett, 2006).

The property that a small fraction of nodes (proteins, genes) are hubs that
possess a high number of connections, whereas the majority of nodes have only a
few, is termed »scale-free-like« topology of the network (Barabési and Bonabeau,
2003; Barabési and Oltvai, 2004). This scale-free-like topology is interwoven with
the modular structure of a biological network. Whereas a modular structure of a
network is crucial for function prediction, a scale-free-like topology could hamper
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function prediction (Gillis and Pavlidis, 2012). Although the biological units repre-
sented by hubs may be essential for the proper functioning of a biological system
(Jeong et al., 2001; He and Zhang, 2006), from an information-theoretical per-
spective they contain a relatively low amount of functional information (Gillis and
Pavlidis, 2012). The information that such hubs affect most biological processes in
a cell is not useful in the context of function prediction. Hubs or nodes with a high
value for a centrality measure may therefore impede the prediction of protein func-
tion. At present, it is unclear to what extent network topology in general, and the
presence of hub nodes in particular, can influence the performance of a prediction
algorithm. The impact of hub nodes may also depend on the type of prediction
algorithm used. Algorithms for the prediction of protein function(s) can be divided
into direct and module-assisted approaches. Direct approaches, such as guilt-by-
association (Walker et al., 1999; Oliver, 2000), BMRF (Kourmpetis et al., 2010)
or FunctionalFlow (Nabieva et al., 2005), as well as module-assisted approaches,
assume that proteins that are closer to one another in the PPI network are more
likely to have similar function. In contrast to direct approaches, module-assisted
approaches first identify coherent groups of genes and then assign functions to all
the genes in each group (Sharan et al., 2007). In both types of procedures, sim-
ple algorithms, such as guilt-by-association, depend on the local environment only,
but other algorithms, including BMRF, need the complete network to achieve high
performance. The impact of removing nodes from the network may therefore vary
from algorithm to algorithm. Direct approaches could benefit most, if disturbing
nodes are excluded from the input data, because prediction algorithms rely on
the edges and nodes without prior clustering and filtering. To assess and possibly
improve the performance of a network in protein function prediction, it should
be investigated what influences the performance of a prediction algorithm. Some
nodes may increase the noise and their removal could increase the performance in
function prediction.

We previously developed the network-based algorithm termed Bayesian
Markov Random Field (BMRF) for the prediction of BP-terms (Kourmpetis et al.,
2010, 2011; chapter 4). BMRF is an example of a direct approach, using interac-
tions in a network to infer function. BMRF assumes that the function of a protein
is dependent on the functions of its immediate neighbors (Markov property). This
assumption is implemented as a Markov Random Field (MRF), using a Bayesian
approach. BMRF requires an initial set of known annotations (seed set). Model pa-
rameters and protein functions are estimated iteratively, until convergence. BMRF
allows, in contrast to guilt-by-association, the transfer of functional information
beyond direct interactions and is able to provide reliable function predictions even
for proteins that are only linked with other proteins of unknown function (chap-
ter 4).

We here use BMRF to assess the influence of the presence of hub nodes on
the performance of the prediction of protein function by extensive node removal
(node pruning) based on multiple pruning strategies and different centrality pa-
rameters. It was shown previously that much of the functional information can be
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contained in a relatively small subset of a biological network (Gillis and Pavlidis,
2012), but it has yet to be established if node pruning can improve the perfor-
mance in the prediction of the function of proteins in biological processes. The
results show significant boosts in the protein function prediction performance of
BMRF by removing hub nodes. Such a pruning approach gives the possibility to
remove apparently noisy elements in the network and increase prediction perfor-
mance without the need for additional (biological) data or experiments.

2 Materials and Methods

2.1 Network data

The biological networks used in this study were obtained and combined from differ-
ent sources. Biological networks for Arabidopsis, yeast and human were obtained
from BioGRID (Chatr-Aryamontri et al., 2013) and STRING (Franceschini et al.,
2013). Edges of STRING networks were required to have a confidence score of
at least 700, as used previously (Radivojac et al., 2013). Only a small fraction of
edges in BioGRID networks had score information, therefore the edges were taken
as is and no cutoff was applied. A combined network was created for every species
by creating the union of the corresponding BioGRID and STRING network.

Pruned networks were generated from the combined network. Evaluating
the performance for all possible removal steps would be computationally pro-
hibitive. We therefore pruned the networks at distinct pruning steps on an ex-
ponential scale. As a result, the first pruning steps (only few nodes removed) are
densely spaced, whereas later pruning steps (high amount of nodes removed) are
much more sparsely spaced. Pruning steps were performed with a step-function
(explained in detail in text 5.56). The step function was selected because of conve-
nience. It results in 100 steps with at most 2848 nodes pruned, the pruning limit of
yeast. The total number of steps varies from analysis to analysis, but in all cases
pruning was stopped when a minimum of 50,000 annotations or 1,500 proteins
per network was reached. This minimum annotation coverage is based on previous
experience (chapter 4).

2.2 Experimental annotation data

Experimental annotation was acquired from the Gene Ontology (Gene Ontology
Consortium, 2000; retrieved Oct. 2013 from http://www.geneontology.org). The
data was filtered for biological process (BP) terms and matched to the corre-
sponding network nodes (proteins). Comparing functional profiles between two
genes/proteins is not trivial. To be able to compare functions between different
nodes, semantic similarity was used. In the context of this study, we defined a se-
mantic similarity measure as a function that, given two ontology terms or two sets
of terms annotating two entities, returns a numerical value reflecting the closeness
in meaning between the two (sets of) terms (Pesquita et al., 2009). Semantic sim-
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ilarity was calculated using the GOSemSim R-package (Yu et al., 2010) using the
Wang measure (Wang et al., 2007) and best-match averaging (Jiang and Conrath,
1997; Pesquita et al., 2009).

2.3 Network centralities

For the calculation of network-related properties, the R-package igraph was used
(http://igraph.org). Different network centralities (degree, betweenness, closeness,
local cluster coefficient and eccentricity) were calculated for every node. Nodes
were ordered (descending) by the value of the corresponding network centrality
and stepwise removed, starting with highest ranked. BMRF is not able to retain
unconnected nodes. Therefore, »orphan« nodes that, as a result of the pruning lost
all edges, were removed too. This is taken into account in the node count used.
Each random pruning setup was created by randomizing the order of the degree-
based ranking. The node pruning was performed according to the randomized
order.

2.4 Domain data

In addition to network and seed annotation, BMRF utilizes protein domain infor-
mation. The domain information was obtained from the Saccharomyces Genome
Database (http://www.yeastgenome.org; retrieved Jul. 2013) for yeast, from UniProt
(UniProt Consortium, 2014; http://www.uniprot.org; retrieved Oct. 2013) for hu-
man and from the Arabidopsis Information Resource (Lamesch et al., 2012; ver.
TAIR10 from http://www.arabidopsis.org) for Arabidopsis. Only domain data de-
rived from the InterPro (Jones et al., 2014) and Pfam (Punta et al., 2012) databases
were used. Domains of transcript isoforms were merged into one set per gene.

2.5 Validation setup

Each pruning step was cross-validated with 100 cross-validation samples. The
cross-validation setup is similar to the setup presented earlier (chapter 4). Predic-
tion runs of pruned networks were assessed for the independently created samples.
A random sample (n=200) of proteins was chosen and the annotation was removed
(masked). Only BP terms with at least three masked proteins were used in the
performance assessment to have sufficient statistics. In the performance assess-
ment, negative cases consisted of gene-BP associations which were not annotated
as such in the experimental data (closed world assumption; Dessimoz et al., 2013).
Every run, the performance was calculated from the comparison of predicted and
masked functions with the experimental annotation data.
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2.6 Assessment of performance

Performance was assessed by the area under the receiver operating characteristic
(specificity vs. sensitivity) curve (AUC). The AUC is interpreted as the probability
that a prediction algorithm will rank a randomly chosen positive instance higher
than a randomly chosen negative one (Hanley and McNeil, 1982). Specificity is
the fraction of proteins experimentally known not to perform a given function
which are not predicted to do so, whereas sensitivity is the fraction of proteins
experimentally known to perform a given function which are predicted to do so.
The performance is compared between both the pruned and unpruned network
and the degree-based and randomly pruned network. In all cases, the difference in
prediction performance is expressed as fraction of the maximum AUC, which is 1
for the theoretically perfect prediction algorithm.

This way assessed, the increase in prediction performance could be un-
derestimated, because removal of nodes implies removal of annotation from the
network. The performance of BMRF is sensitive to the amount of annotation
(training data) (chapter 4). Moreover, the coverage of experimental annotation is
different between random and degree-based removal (fig. 5.51), which would result
in bias. To reduce such biases in the assessment of the prediction performance, the
functional annotation not present in the maximum pruned state was masked in all
pruning steps. This way, all pruning steps have the same annotation coverage.

3 Results

The input networks were created on the basis of public domain protein-protein-
interaction (PPI) data for three different organisms, yeast, human and Arabidop-
sis. Overall characteristics of these networks are given in table 5.1. The node dis-
tribution is given in fig. 5.1. The distribution is typical for the scale-free topology
of biological networks: most nodes have few connections whereas a small fraction
of nodes has many such edges (fig. 5.1). Therefore we removed highly connected
nodes (hubs) stepwise to investigate the influence of hub nodes on the prediction
performance. It is anticipated that edges between hub nodes and non-hub nodes,
or between hub nodes and different network modules, can result in connections
that are not related with respect to function (fig. 5.2) and therefore can hamper
predictions based on such connections.

Nodes were ranked by their degree (number of connections) and removed
stepwise according to their rank. All three networks were pruned till either a mini-
mum of 50.000 annotations or 1.500 proteins, whatever limit was reached first. The
maximum number of nodes removed was 5683 for Arabidopsis, 12856 for human
and 2848 for yeast (table 5.2). To assess the performance differences, we used a
100-fold cross-validation with 200 proteins per test set. The area under the receiver
operator characteristic (AUC) was used as measure of performance. By removing
high-degree nodes (hubs) stepwise, BMRF shows a clear performance increase
compared to the not pruned network (fig. 5.3). When more nodes are removed,
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Table 5.1: Descriptive statistics of the three networks used in this study.

ARABIDOPSIS HUMAN YEAST
no. of proteins (nodes) 14,846 29,313 6,396
no. of connections (edges) 142,413 603,605 293,578
no. of experimental annota- 12,168 49,011 11,378
tions
no. of proteins with experi- 4,572 9,228 4,282
mental annotations
no. of experimental annota- 2.66 5.31 2.66
tions per protein
correlation of degree differ- -0.25 -0.11 -0.09
ence vs. semantic similarity
(p < le-16)
annotation coverage® (%) 31 31 67

%no. of experimentally annotated proteins/no. of proteins in network

Arabidopsis

=

o

o

o
|

no. of nodes
=
o
1

l
10 1000

10

human

1
1000
degree

yeast

10

Figure 5.1: Distribution of nodes in the networks of Arabidopsis, human and yeast.
The histogram (note that both axes are on logarithmic scale) shows the scale-free-like
topology characteristic for this type of biological networks.
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Figure 5.2: Simplified example of a biological network. Functionally different (blue vs.
red) network modules are connected by a hub node (node 6). The hub node connects
two modules that represent different functions (»bridging«). Each node corresponds to a
gene/protein, interactions are indicated by edges. In function prediction, the interactions
are used as proxy for functional similarity. Function prediction algorithms could transfer
functions via the hub node between these two modules, possibly introducing incorrect
function predictions. Incorrect functions could also be transferred from the hub node to
the modules directly.

the performance for Arabidopsis and human reaches an optimum. The optimum
occurs for human at 5683 pruned nodes (19% of all nodes) and for Arabidopsis at
2848 pruned nodes (19% of all nodes). In contrast, the performance curve for yeast
continues to rise till the final pruning step at 2848 pruned nodes (45% of all nodes).
Further pruning in yeast would violate the minimal requirements for proper cross-
validation. It is therefore not possible to determine if additional pruning would
show an optimum for the performance. At the optimum, the improvement of the
performance (AUC difference of the median) is 0.013 for the Arabidopsis data,
0.021 for the human data and 0.212 for the yeast data (table 5.S1 and fig. 5.4A).
The AUC difference data show a high variation for certain BP-terms (fig. 5.4A),
reflecting a relatively high uncertainty in the prediction performance for an indi-
vidual GO-term.

Unexpectedly, despite correcting for the coverage of experimental annota-
tion (see section 2), random pruning of nodes still increased the performance of
BMRF compared to the unpruned network (fig. 5.3). For Arabidopsis and human
the performance curve continued to rise till the final pruning step, whereas for
yeast, random pruning reaches its optimum at the second last step (2675 nodes
pruned). At the optimum, random pruning shows a performance increase of 0.017
for Arabidopsis, 0.010 for human and 0.109 for yeast (table 5.S1 and fig. 5.4A).

To properly evaluate the performance, we compared degree-based and ran-
dom pruning in two ways. The optimum of degree-based pruning was compared
with the optimum of random pruning (fig. 5.3). Degree-based pruning achieves
higher performance for human (0.011) and yeast (0.104), whereas for Arabidopsis,
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Table 5.2: Overview of the maximum pruning states. Network information about the
maximum pruned state is shown for Arabidopsis, human and yeast.

SPECIES ~ PRUNED NO. OF NO. OF NO. OF  LIMITATION®
NODES PRUNING NODES® BP-TERMS
STEPS
Arabidopsis 5683 111 1,748 51,706 BP-terms
human 12,856 124 1,619 85,639 nodes
yeast 2848 100 1,683 54,920 BP-terms

%no. of nodes that remain after pruning
blimiting threshold (50,000 BP-terms or 1,500 remaining proteins in network)
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Figure 5.3: Performance curves of the pruning analyses in Arabidopsis (A), human (B)
and yeast (C). The results expressed as difference AUC of degree-based pruning (solid
line) and random pruning (dotted line) are plotted in the respective panels, calculated
with the help of function smoothing. An optimum is indicated by red dot. Open circles
indicate the performance of random pruning at the optimum of degree-based pruning.
The performance in this figure might differ slightly from the boxplot (fig. 5.4), due to the
application of function smoothing. The exact performance values are given in table 5.51.
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random pruning performs better (0.005). In addition, the performance of random
and degree-based pruning was compared at the optimum of degree-based pruning.
In this comparison, degree-based removal performs better for all three networks
(fig. 5.3): 0.007 for Arabidopsis, 0.017 for human and 0.106 for yeast. These com-
parisons show that degree-based pruning tends to perform better than random
pruning.

The performance increase of random pruning compared to the unpruned
network, as well as the small difference between random and degree-based prun-
ing for Arabidopsis and human, motivated more detailed investigations. Analysis
of the masked annotation reveals that random removal retains a higher amount
of experimental annotations per node (fig. 5.51) in the later removal stages. Such
annotation bias for high-degree nodes has an effect on the prediction performance
of BMRF upon masking of annotation. Moreover, the fraction of nodes shared
between random and degree-based removal increases on progressing node pruning
(fig. 5.52). Additional analyses with the largest network (human) were performed
using a combined set of nodes used for masking annotation in such a way that
degree-based and random removal were assessed on the same set of annotations
and cross-validation sets. These analyses showed an increase in performance of
degree-based pruning, but negligible increase of performance of random pruning
(table 5.S1). This demonstrates that no issues other than the distribution of anno-
tation data affect the performance of random pruning. The performance increases
seen in random pruning are biased by the distribution of annotation. They should
be considered an artifact of the experimental set-up that should not affect the
conclusions of results of degree-based pruning.

To see if the impact of unequal annotation removal could be reduced further,
the performance was assessed at a lesser number of nodes pruned for Arabidop-
sis and human. We selected 2848 pruned nodes as maximum number of nodes
pruned (the maximum number used for yeast) to retain larger numbers of nodes
with experimental annotation. Indeed, BMRF shows a higher performance differ-
ence between random and degree-based removal (fig. 5.S3). With only 2848 nodes
pruned, degree-based pruning performs better than random pruning. Results show
a AUC difference of 0.015 for human, 0.037 for Arabidopsis and 0.104 for yeast.
Compared to the unpruned network, the performance increase is 0.042 for Ara-
bidopsis, 0.023 for human and 0.212 for yeast (table 5.51 and fig. 5.4B).

In the best unbiased set-up developed, pruning high-degree nodes improves
the performance of BMRF in the prediction of protein function in biological pro-
cesses. To assess if edges between hub nodes and non-hub nodes can result in
functionally unrelated connections (fig. 5.2) that affect performance (Cao et al.,
2013), the functional information contained in the edges of a biological network
was analyzed to see how this is related to a difference in node degree. Experimen-
tally annotated proteins were compared using semantic similarity (see section 2)
as proxy for functional similarity or difference. Proteins with a high difference in
degree tend to be weakly (yeast R=-0.09; human R=-0.11; Arabidopsis R=-0.25),
but significantly (p < le-16) functionally different (fig. 5.5; table 5.1). The high
significance indicates that such a correlation exists.
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Figure 5.4: Function prediction performance of pruned networks upon degree-based
(degree) and random (random) pruning for Arabidopsis, human and yeast. Shown is the
box plot of the difference in AUC compared to the unpruned network at the optimum
of the performance curve (fig. 5.3) for all GO BP terms in the annotation. The boxplot
represents the mean and quartiles of the AUC differences (y-axis). The plot was created
according to Krzywinski and Altman (2014). The AUC difference was calculated per BP
term. Outliers are represented by black dots. The x-axis shows combinations (setups)
of a pruning strategy (degree, random) and an organism (Arabidopsis, human, yeast).
The corresponding quantitative data are given in table 5.2. (A) The performance at the
optimum pruning step. (B) Same as (A), but the maximum number of nodes pruned is
2848 for all three networks. The exact performance values are given in table 5.51.
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Figure 5.5: Relationship between semantic similarity and degree for the three networks.
Semantic similarity is plotted as function of the degree difference of two proteins that
are connected. Proteins with a high difference in degree, i.e. a hub node connected to a
non-hub node, tend to have lower semantic similarity (top-right is sparse). The overall
correlation between degree difference and semantic similarity is given in table 5.1.

To investigate how the performance improvement translates to single GO-
terms, the prediction performance for human and yeast was analyzed in more
detail. Human and yeast data were chosen because the extensive annotation that
is available results in many shared GO terms. The analyses show that the same bio-
logical processes, tend to share the same trends in performance difference (R=0.42;
fig. 5.6). This trend could however be influenced by the depth or frequency of GO-
terms. Therefore, the frequency of a GO-term in a network was related to the per-
formance difference in human and yeast. No, or at most a negative, association was
found between performance and the number of proteins with a particular function
(human: R=-0.05, p=0.137, fig. 5.S4A; yeast: R=-0.27, p=4.534e-8, fig. 5.54B).
A negative association indicates that more rare GO-terms show a higher gain in
performance. Also, the depth of a GO-term was related to the performance dif-
ference. The relation is weak (human R=0.13, p=0.023; yeast R=0.17, p=0.002),
indicating that the prediction of more specific GO-terms is likely to benefit more
from network pruning than more general GO-terms.

In addition to node degree, other centrality measures are available to rank
nodes and identify hubs in networks (Borgatti and Everett, 2006). A different
centrality may give different results. We therefore evaluated the four centralities
betweenness, eccentricity, local cluster coefficient and closeness in combination
with the prediction performance of BMRF for the network data in yeast. Yeast
was selected because of the clear performance increase obtained with degree-based
removal presented above and the relatively small network size requiring less com-
putational efforts. For all centralities tested, the performance of BMRF increases
with progressing node removal (fig. 5.55A), but the overall results do not differ
from the results obtained for the centrality measure node degree.
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Figure 5.6: GO terms differ in performance gain. Comparison of performance gain in
the yeast and human network per GO-term. Each point corresponds to the difference
in AUC of a GO-term in human and yeast upon node pruning. Based on the point
distribution, a density was calculated and added as background layer. Dense regions
(brown) show a high concentration of GO-terms. Yeast shows for almost all GO-terms a
higher performance gain (points above diagonal line). A positive performance difference
indicates that a particular GO-term increased its performance on node pruning. Biological
processes that show a performance increase in yeast show also a performance increase in
human (R=0.42). The difference shown is based on the AUC at 2848 nodes removed.

4 Discussion

We evaluated the effect of node pruning on the performance of the prediction of
the association of GO terms for biological processes with proteins with BMRF
(Kourmpetis et al., 2010) as network-based function prediction algorithm and net-
works based on protein-protein interaction data. The results demonstrate that
centrality-based node removal improves the prediction performance significantly,
irrespective of the centrality measure taken. As the measure »degree« (the num-
ber of connections to other proteins) is the easiest to calculate and is the most
intuitive, we conclude that degree gives the best trade-off between performance
gain and simplicity; its use is therefore recommended. Using degree as centrality
measure, the performance increase obtained with BMRF ranges from 0.02 to 0.20
difference in AUC. BMRF depends a lot on the amount of annotation available
and therefore the improvements obtained depend strongly on the amount of an-
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notation used. As the volume of experimental annotation is likely to continue to
increase, BMRF-based network pruning as here presented may develop into an
attractive improvement for network-based function prediction methods.

Although it is known that (noise in) network topology can influence pre-
diction performance (Nabieva et al., 2005; Gillis and Pavlidis, 2012; Pavlidis and
Gillis, 2012), only few attempts are presented in the literature that evaluate net-
work pruning as method for the improvement of the prediction of function. Earlier
analyses using edge pruning and a direct guilt-by-association approach indicated
that a biological network can be reduced four-fold in size and still retain most of its
functional information. It showed that a small number of edges can have a major
impact on prediction performance (Gillis and Pavlidis, 2012). Here we show that re-
moval of a large number of hub nodes actually improves prediction performance us-
ing a considerably more sophisticated algorithm than guilt-by-association, BMRF
(Kourmpetis et al., 2010).

In the context of function prediction, the presence of hub nodes can ap-
parently be unfavorable for performance. Possibly the participation of hub nodes
in multiple processes results in a broad and unspecific functional profile which re-
duces the information content, or hubs may show a higher number of false positive
annotations (Gillis and Pavlidis, 2012). The data shown here on specific vs. more
general GO terms supports that indeed a broad, less specific function profile of
hub nodes may explain the performance increase upon pruning. Assessing the pos-
sibility that hubs are associated with higher numbers of false-positive annotations
will require more analyses.

A third possibility explaining the results of hub pruning could be that the
many connections to a large number of functionally unrelated proteins result in hub
nodes bridging functionally distinct modules. This way, network-based function
prediction algorithms may extend the functional annotations beyond functionally
related module members, which could propagate incorrect functional annotations.
To what extent such bridging occurs and what the impact can be, depends on
the nature of the relationship between hub and non-hub nodes. A more detailed
assessment of this will require an artificial setup derived from a biological network.
For this setup, potential »module-hub-module«-bridges need to be identified and
analyzed. Such analysis may complement the results presented here. For a first
insight, the direct interplay between hub and non-hub nodes was analyzed on the
level of correlation between semantic similarity and degree. Semantic similarity
(for definition used, see section 2) correlated, albeit weakly, highly significantly
with the difference in degree of two connected proteins (table 5.1). The high signifi-
cance is taken to show that hub nodes connected to non-hub nodes show a different
functional profile than two hub nodes connected or two non-hub nodes connected.
This property may be related to the bridging of modules by hub nodes, because a
functional difference of hub and non-hub nodes is a necessary condition for bridg-
ing. Similar functional profiles between hub and non-hub nodes would render the
to be bridged modules similar, too. Due to the weak association of the functional
difference between hub and non-hub nodes, only a subset of the network is likely to
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show this difference. Moreover, the (low) correlation varies considerably between
the three networks analyzed. The variation could point towards differences in the
sources of the network data. The networks are compiled from multiple studies
(with potential differences in research focus) and detection methods (Ryan et al.,
2013). This multitude of interaction data sources introduces uncertainty, which is
likely to be responsible for the variation. To reduce such variation, the interaction
data could be separated by their detection method. This would allow to test the
effect of network pruning in relation to the detection method. It is expected to
have lower variation in such a setup.

The properties and topology of a network affect the prediction performance
of node pruning. The improved prediction performance may be the result of dif-
ferent issues coming together in the topology of a network. Due to the massive
amount of unannotated proteins, the small performance increase can translate to
a high number (in absolute terms) of improved annotations. However, more net-
works will have to be analyzed to see if there is any general issue or characteristic of
the network involved and if that issue can be used for improving the performance
even more.

The effect of hub-node pruning clearly depends on the type of biological
process (BP) considered. The comparison of the performance for human and yeast
shows that the increase of shared BP-terms is correlated. This indicates that the
pruning is affecting BP terms independent of the organism. Some BP terms re-
spond very well to pruning in general, whereas other terms have no or a negative
response: not all BP benefit equally from the network pruning. A low performance
in several networks (of multiple organisms) could be used as indication that such
BP-terms rely on or even require the presence of hubs. However, by comparing the
BP performance of yeast and human, no relation could be made to GO-term depth
or specificity. A biologically intuitive pattern to be able to classify or predict the
response of BP to pruning stays elusive.

A large part of the network pruning analysis was devoted towards the as-
sessment and reduction of potential biases. All biases addressed in this analysis
fall into the category annotation biases. Annotation is used to measure the per-
formance, thus biases introduced by unequal and missing annotation coverage can
influence the results. An important potential bias that is discussed often is that for
many proteins the BPs in which these proteins function are not (yet) known (Hut-
tenhower et al., 2009; Dessimoz et al., 2013; Gillis and Pavlidis, 2013). Here we
consider an unknown annotation as a negative annotation, because of the lack of
an established assessment method. Our approach can result in lower performance,
because a correctly predicted, yet unknown BP will be considered as wrong in the
evaluation. However, BMRF was used in all evaluations, so no or negligible bias
is expected with respect to the methodology of analysis here presented.

In addition to the potential bias of unknown annotations, we identified and
addressed other potential biases. First, the removal of nodes implies removal of
annotation from the network. By pruning the network, the change in performance
could reflect the reduction of annotation and not the removal of hub nodes. Sec-
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ond, the coverage of experimental annotation is different between random and
degree-based removal (fig. 5.51). Removing nodes randomly decreases the anno-
tation slower than degree-based removal. To reduce the effect of these two biases,
the annotation of the network nodes was masked prior to pruning. In addition,
we evaluated performance at a fixed cut-off of 2848 nodes for human, yeast and
Arabidopsis to investigate the influence of the amount of annotation. In the latter
set-up, a higher amount of annotation is available and as a consequence, indeed a
better performance was achieved. The results show that masking is subject to a
trade-off. BMRF performs best in situations where the annotation coverage is high
and under-performs in environments with poor annotation coverage. Evaluation
on masked setups might therefore underestimate the true performance of BMRF.

The last major bias we considered has a more subtle effect on the prediction
performance. The masking of annotation reduced the bias, but random removal
still showed an unexpected increase in performance, despite all precautions taken
a priori to prevent biased assessment related to the amount of annotation. This
behavior of random pruning could indicate that the results of degree-based prun-
ing should be interpreted with a lot of caution, or that the prevention taken was
not enough. The performance curve of random pruning differs from degree-based
pruning (fig. 5.3), suggesting different mechanisms could be in play. From a theo-
retical point of view, biological networks should be resistant to random pruning of
nodes (Barabdsi and Bonabeau, 2003). In case of an uneven distribution of exper-
imental annotation, random pruning will remove a large fraction of unannotated,
low-degree nodes. As a result, the fraction of randomly removed hub-nodes de-
creases with the size of the network. Therefore, the largest performance increase
of random removal is seen in the network of yeast, where a relatively high amount of
nodes is pruned. To test whether the behavior of the random pruning approach still
suffers from differences in annotation (and removal of annotation upon pruning),
the ranked lists were combined in such a way that the same sets of annotation
could be pruned in both random and degree-based pruning. This allowed using
the same cross-validation sets for random and degree-based pruning. In this direct
comparison, random pruning did not show improvement of predictions, whereas
degree-pruning did (results not shown). This demonstrates that indeed the amount
and relative composition of annotation terms interferes with BMRF performance.
More analysis and research will be necessary to see if equal-annotation-set pruning
is feasible as routine analysis in biological networks and how it compares to the
analyses presented here. The analysis of network pruning presented here should be
considered as a first step into improving network-based function prediction. Many
future approaches are conceivable improve both assessment and methodology of
network pruning.

The first improvement will result from the ongoing annotation efforts of
the Gene Ontology Consortium. As annotation will accumulate in the future, the
annotation- and network coverage of organisms (likely notably of model organ-
isms) will reach higher levels. In such case, node pruning will become much more
powerful. A large gap in terms of network data and annotation coverage exists
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between model- and non-model organisms. Once the network and annotation data
in non-model organisms also reaches higher levels, a much more detailed analysis
of the network-pruning-effect becomes possible. In addition, also the quality of ex-
isting experimental annotation is likely to increase (Skunca et al., 2012), leading
to a more comprehensive and consistent starting point for network pruning.

To increase not only the amount of annotation, but also the amount of
available network data, data from multiple species could be combined. There are
many possibilities to combine networks from multiple species. However, integration
of such networks can lead to contrary effects. It was demonstrated that the same
network across species can result in different phenotypes (McGary et al., 2010;
Ideker et al., 2011) and, vice versa, different networks across species result in
similar responses (Erwin and Davidson, 2009; Ideker et al., 2011). Without further
assessment, the combination of cross-species networks and network pruning might
lead to unexpected results. Yet, the basic property of hub nodes impeding function
prediction performance may be preserved even in cross-species networks. Hence,
incorporating more networks and species in the analyses is an interesting option
for increasing the performance of BMRF with network pruning.

Overall, the positive effect of pruning on prediction performance demon-
strates that hub nodes can hamper prediction performance. The positive effect
of hub pruning does not seem to depend on the particular organism or network
(Mossa et al., 2002; Gillis and Pavlidis, 2012; Winterbach et al., 2013). Analysis
of pruned networks and their hubs is therefore a relatively easy way to improve
network-based function predictions with BMRF. In practical applications, it will
be essential to determine the optimal pruning step for any given network. Given
an optimum pruning step, we suggest doing two separate prediction runs. The
first run is with the full network. This allows the prediction of hub node functions.
And the second run is a subset of the network, containing only non-hub nodes and
edges. The functions predicted for the subset are used as higher quality non-hub
node annotations. This strategy can be applied to most network-based function
prediction algorithms without further modification. It would make network prun-
ing an attractive option for future protein function prediction.
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Figure 5.S1: Impact of node removal on annotation coverage. Degree-based node prun-
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degree, thus the number of GO-terms per protein decreases faster when nodes are re-
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Figure 5.S2: Intersection of random and degree-based pruning sets. The number of
nodes shared between random and degree-based removal increases in later pruning stages.
Yeast shows the highest overlap, followed by Arabidopsis and human. The maximal re-
moval stage is 2848.
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reach the highest performance difference at 2848 pruned nodes. Optima are indicated by
filled red circles. The performance in this figure might differ slightly from the boxplot
(fig. 5.4), due to the application of function smoothing. The exact performance values
are given in table 5.51.
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Figure 5.S4: Comparison of GO-term frequency and performance difference in human
and yeast. The frequency of a GO-term in a network was related to the performance
difference in human and yeast. (A) The difference in AUC (positive = performance in-
crease) is not correlated with the number of proteins performing a particular function in
human (R=-0.05, p=0.13). (B) The difference in AUC (positive = performance increase)
is weakly correlated with the number of proteins performing a particular function in
yeast (R=-0.27, p=>5e-8). The correlation is negative, rare GO-terms tend to have a
higher performance increase.
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Figure 5.S5: Function prediction performance of different centralities in yeast. The yeast
network was pruned by 6 different setups, corresponding to the centralities betweenness,
eccentricity, local cluster coefficient, closeness and degree. Shown is the performance
difference compared to the unpruned network (A) Shown is the box plot of the difference
in AUC at the optimum of the performance curve for all GO BP terms in the annotation.
The boxplot represents the mean and quartiles of the AUC differences. The plot was
created according to Krzywinski and Altman (2014). The AUC was calculated per BP
term. QOutliers are represented by black dots. The corresponding quantitative data are
given in table 5.2. (B) The performance (y-axis) increases on progressing node removal,
reaching the highest value at 2848 nodes (maximum pruned state). The performance in
this figure might differ slightly from the boxplot in subfigure (A) due to the application
of function smoothing. The exact performance values are given in table 5.51.

121



CHAPTER 5

8¥8¢T 0L78°0 €61T°0 v.Lv80 L80T'0 878¢ GLIT TLELO wopuey

878¢T 69780 €LLT0 ¥9¥8°0 791°0 8¥8¢ 8¥8¢T 06290 A310119U800
8¥8¢ ¥v¥80 160T°0 LG78°0 ¥960°0 8¥8¢ GL9T SeVL0 99 Ted07]
8¥8¢ 6978°0 08120 VEV8'0 GETC0 8¥8¢ 878¢C L7€9°0 $SOUBSOID
SV8% 09¥8°0 6532°0 78780 ¥312°0 878z ST8¢ 9590 ssouueomIog
878¢C ¥2€8°0 €1¢20 L0€8°0 rqrali] 8¥8¢ 8V8¢C 18090 92189
(3seak) sarjifeayusd 1a9yjo Aq Surunad
16€6 G8¢L°0 16€0°0 88€.L°0 €0€0°0 0€66 0288 €904°0 99180p uewINyY
16T ¥104°0 GT100°0 €804°0 ¢200°0 0€66 8¢V §90L°0 wopuer uewny
99a3op pue wopued J0J UOIjelOUUR SUIRS
8¥8¢T 0L78°0 €61T°0 7.78°0 L80T°0 8V78CT GL9T TLELO wopuer jseak
878¢C ¥2€8°0 €122°0 L0€8°0 taral) 8¥8¢ 8¥8¢ L809°0 99130p 9seah
8¥8¢ ¥82¢L0 1600°0 86C.L°0 0800°0 8¥8¢ 878¢C 8€TL0 uropuel uewimy
8¥8¢ G8TL°0 0L20°0 c0cL 0 c€c00 8¥8¢ GL9T L769°0 92139p urwIny
878¢C 96140 65000 VLILO 9700°0 8¥8¢ 878¢C 6€TL°0 wopuer sisdoprqery
878¢C T6LL 0 87700 048L°0 1270°0 8¥8¢ 8¥8¢C GLELO 99130p sisdopiqery
8%8z dojs Surunad [euy
8¥8¢ 0L¥8°0 €61T°0 €L78°0 L90T°0 8¥8¢ 878¢C TLELO wopuer 1seak
94821 0808°0 §2c0°0 L0080 G€00°0 948cT €899 868L°0 wopuel uewny
€899 86690 T6T0°0 06890 ¢g00°0 €899 878¢C L2890 wopuer sisdoprqery
winuwiijdo a9139p je eoururiojiod wopued
8¥8¢ 0L¥8°0 €61T°0 YL¥8°0 L80T°0 8¥8C GL9T TLELO wopuer jseak
8¥8¢ ¥2€e8°0 €152°0 L0€8°0 rq rali] 8¥8¢ 878¢C L8090 92139p 4seIL
94821 0808°0 §2c0°0 L6080 9600°0 948cT 9G8CT 8684°0 wopuer uewny
€vv9 §29L0 €020°0 LTLLO 01200 9G8cT €899 LEVLO 99189p uewny
€899 8669°0 T610°0 800L°0 cL10°0 €899 €89¢ L3890 wopuel sisdoprqery
GL9T 0T0L°0 ¢110°0 €L69°0 Gc10'0 €899 8V8¢C 9LL9°0 99180p sisdoprqery
pIoysaayy apou/uoijejouue [[1} Surunad
(HLOOWS "1dO)  ("1Ld0) DNV  (HLOONS) ('rdo) pnv  cadia DNV (TVNIL) ("1do) (aaNn) DNV N
“dd SHAON HLOONS AId DOV NVIAHIN NVIAAN “dd SHAON “dd SHAON NVIAdIN

‘(reuy) degs Surunid [euy
oty pue umwido a1y 10f umoys oIk ("Id sepou) peunid sOPOU Jo I9UUNU oY} ‘Sonfea DV 93 01 Surpuodseiio)) "palsi] ore (joows)
oAIND doururiojiod POYIOOWS 91} I0J SOOUSIOPIP pue sonfea DY oy} ‘A[euonippy -suwnjoo ojeredos ur umoys are Oy peounidun
pue umuirydo usemyaq (PIp) SeoULIePIP DNV PoISI oIe seje)s (+4do) wnwrydo pue (1dun) peunidun o1} jo senfea DYy oY) ‘(dnjes)
wistue3Io pue A3ejerls Surunid yors I0 SISA[eur AQ POPIAIP ST MOIAIDAO oY ], ‘seoururIojrod Surunid oy) Jo MoIAIOA() :1S°G O[qETL,

122



PRUNING BIOLOGICAL NETWORKS TO IMPROVE FUNCTION PREDICTION

Text 5.S6: Definition of the pruning-step function.
Due to computational constraints, it was not possible to test all pruning steps.
Therefore, we selected a function to create distinct steps on an exponential scale
to cover the space of pruned network states. The function has the form:

fla) = 10014075

with x = 0,1,2,..., N; the steps were rounded to integer number and duplicated
values were removed.
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CHAPTER 6

The research presented in this thesis focuses on deriving function from sequence
information, with the emphasis on plant sequence data. The connection between
sequence information and function was approached on the level of chromosome
structure (chapter 2) and of gene families (chapter 3) using combinations of exist-
ing bioinformatics tools. The applicability of using interaction networks for func-
tion prediction was demonstrated by first markedly improving an existing method
(chapter 4) and by exploring the role of network topology in function prediction
(chapter 5). Taken together, the combination of methods and results indicate the
potential as well as the current state-of-the-art of function prediction in (plant)
bioinformatics.

The number of sequenced genomes is growing fast. About 1100 human
genomes are now in the public domain, or announced, and analyses focus on struc-
tural variations in connection with any phenotype or disease of interest (Abeca-
sis et al., 2012). About 38 million single nucleotide polymorphisms (SNPs) are
available for analysis of the human genome, but results so far illustrate the high
complexity of complex traits (Lupski et al., 2011).

Also in plants, the number of sequenced genomes is increasing. The atten-
tion is shifting from the few model plants (Bevan and Walsh, 2005; Paterson et al.,
2005; Morrell et al., 2011) to agronomically important plant species. Challenge is
to translate the findings in model species to real crops. After the model species
Arabidopsis thaliana (Arabidopsis), many more plant species have been sequenced
(Hamilton and Buell, 2012). These are often considered »model« for a particular
trait-of-interest not offered by Arabidopsis (Paterson et al., 2005; Morrell et al.,
2011). In addition, projects involving re-sequencing of segregating populations or
selections of biological variation are bridging the gap between genomics and plant
breeding. There are now more than 80 plant species sequenced, of which the largest
known genome is carried by Pinus taeda (Neale et al., 2014). Its draft genome of
23.2 Gb was released in the beginning of 2014. Issues are genome size, genome
complexity (repeats) and ploidy. In addition, the number of resequenced plant
genomes is increasing. The first major effort was to capture the genetic varia-
tion in Arabidopsis (Cao et al., 2011; Schmitz et al., 2013) in the form of the
Arabidopsis 1001 Genomes Project. The project yielded the first comprehensive
catalog of common SNPs as well as small- and large-scale rearrangements, such as
deleted, duplicated or non-reference regions. This effort marks the first step into
deciphering the adaptation of Arabidopsis to diverse environments. Following the
footsteps of human GWAS studies, the project aims to cover most of the com-
mon variants. Currently this spans over 1,000 strains with about 216,000 tagged
SNPs, covering approx. 90% of all common variants (Cao et al., 2011). Similar
efforts were completed for rice (Subbaiyan et al., 2012; Xu et al., 2012), soybean
(Lam et al., 2010) and maize (Lai et al., 2010; Hufford et al., 2012). Currently,
the 150 Tomato Genome ReSequencing (www.tomatogenome.net) project aims at
identifying and exploring the genetic variation in tomato. The results will allow
to study recombination and identification of alleles that have been lost during
domestication (www.tomatogenome.net; Causse et al., 2013).
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Yet, it is getting clear that having the sequence of a plant genome alone is
not sufficient. The real challenge is what to do with all that sequence data. How
to make sense of the bulge of sequence data and how to use it most efficiently
for crop improvement is a key challenge (Jackson et al., 2011). Data generation
may nowadays be straightforward and affordable, the interpretation and analytical
approach towards understanding of function is, however, far from trivial (Mardis,
2011). The quest for function is not only motivated by the desire to know, but
also by the need to use. Plant breeding is directed towards improving plants for
human benefit (Xu, 2009). Its efforts tend to focus on yield, disease resistance,
agronomical performance and quality of for example fruits or grains. Ways to
utilize sequence data are still at the beginning. One way of utilization is to un-
derstand the origins and domestication of crop plants. Understanding the origins
and domestication of crop plants is considered essential for the identification and
use of the appropriate genetic resources and loci of agronomical interest for crop
improvement (Morrell et al., 2011). Plant genome sequencing should help such
understanding and contribute to the improvement of plants for human use.

The function implied in plant sequence data can be assessed at different
levels of organization. Laboratory and field experimentation are often preferred
methods, but they are costly and slow (Lee et al., 2007). Sequencing was the
biggest cost factor in sequencing projects 14 years ago. Nowadays, due to the
reduction in sequencing costs, the biggest cost factors are downstream analyses,
including annotation of function. It has been estimated that future sequencing
projects need to allocate more than 50% of their financial resources to analyses
not directly connected to sequencing itself (Sboner et al., 2011). Current projects,
however, focus on the sequence production and (partly) neglect the importance of
follow-up experiments (Sboner et al., 2011). In the absence of experimental data,
computational analysis is the method explored in this thesis. In general terms
it involves comparison; comparison with known sequences, known functions or
known interactions. Behind almost all approaches of comparison are the concepts
of evolution, selection and descent.

A first level of comparison for functional inference is comparison of genome
structure (Zheng et al., 2004). This is a first step in the genetic underpinning of
plant breeding and selection in plant breeding (chapter 2). The earlier development
of (molecular) markers and marker-based mapping studies provided insight in the
structural organization of plant genomes, including tomato and potato (Bennetzen,
2000a). Such maps tend to have a low marker density and a limited accuracy that
prevent good local resolution of chromosomal organization (chapter 2 ;Bennetzen,
2000a; Liu et al., 2012). Genome sequencing offers the highest information density
feasible and genome comparison will show most if not all details of structural
variation and possibly the evolutionary history of plant genomes.

In chapter 2 of this thesis, a first step into resolving the rearrangement
phylogeny within the Solanaceae is presented on the basis of extensive sequence
comparisons. Syntenic loci have been identified for selected chromosome regions
in Solanum and Capsicum genomes. We have identified collinear segments and
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collinearity breaks. These breaks do not only occur in heterochromatic portions,
but also frequently in the euchromatic portion of the chromosome regions we have
investigated. The combination of genetic maps and comparative sequence analy-
sis provide a valuable resource for resolving the chromosome organization at the
structural level. Several structural differences observed between tomato and potato
have not been seen in existing linkage maps. Some rearrangements point towards
specific recombination events in the tomato clade that occurred after the split from
the last common ancestor of tomato and potato.

The results from the synteny study pave the way for DNA-based selection
in introgression breeding. Similar analyses of more genomes may identify hotspots
for recombination and/or cases of linkage drag that are difficult to prevent. Such
knowledge of structural issues and functions of plant genomes may help future
selections of (more) suitable parents in a (pre)breeding program. The results can
also motivate strategies to mine structural genetic diversity to develop genome-
based breeding tools that will accelerate breeding for targets-of-interest. Current
efforts, such as the Plant Genome Database (Duvick et al., 2008), Plant Genome
Duplication Database (Lee et al., 2013b), CoGepedia (Lyons and Freeling, 2008),
PLAZA (Van Bel et al., 2012) or Phytozome (Goodstein et al., 2012), try to in-
tegrate, centralize and visualize structural properties of plants. Future sequencing
projects may integrate their data seamlessly into these platforms. This allows to
automate and standardize the most common set of analyses, including structural
rearrangements and structural genome annotation.

A level of function more directly related to sequence data than the structural
functionality outlined in chapter 2, are the functions as defined by the domains
of the Gene Ontology project (Gene Ontology Consortium, 2000): cellular com-
ponents (location), molecular function (catalytic activity, binding and the like)
and biological process (e.g. tuber formation), defined as the sets of operations or
molecular events with a defined beginning and end, that are pertinent to the func-
tioning of integrated living units such as cells, tissues, organs or whole organisms
(www.geneontology.org).

In the context of translating functions from model plants to agronomical
relevant crops, gene family analysis is an option (Martinez, 2013). A comparative
genomic analysis of the Snf2 gene family is presented in chapter 3 of this thesis.
Snf2 family ATPases function in large protein complexes. They are responsible
for energy supply during chromatin remodeling and influence many processes in
plants. Analyses in the model species Arabidopsis show a possible link with the
response to environmental stress (Kanno et al., 2004; Huettel et al., 2007), which
would be a possible lead for translation to non-model plants such as tomato or
potato. The precise molecular mechanism of action of many of these proteins re-
mains however largely unknown (chapter 3; Knizewski et al., 2008).

Chapter 3 of this thesis presents the first comprehensive study of Snf2
family ATPases in available plant genomes. The number of Snf2 ATPases shows
considerable variation across plant genomes, suggesting a broad functional diver-
sification within this gene family. Some subfamilies of the Snf2 gene family are re-
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markably stable whereas others show expansion and contraction in several plants.
One of these subfamilies, the plant-specific DRD1 subfamily, is non-existent in
lower eukaryote genomes, yet it developed into the largest Snf2 subfamily in plant
genomes. It shows the occurrence of a complex series of evolutionary events. Its
expansion, notably in tomato, suggests novel functionality in processes connected
to chromatin remodeling. Members of this subfamily could make suitable targets
for breeding and plant improvement to target environmental stress tolerance and
yield in future breeding, for example in reducing QTL xenvironment interactions.

Gene family analysis as presented in chapter 3 is an example of down-
stream analysis that assumes proper genome assembly and annotation. Experience
has shown, however, that such assumptions must be considered carefully. Unfor-
tunately, information about the quality of data is scarce in structural genome
annotations. When gene models are taken for granted (which is common prac-
tice in comparative genomics), but wrong, it can lead to misinterpretations (Jones
et al., 2007; Lee et al., 2007; Schnoes et al., 2009). Also, the amount of missing
annotation — functions and properties not (yet) associated with a gene — should
be estimated and taken into account (Dessimoz et al., 2013). The analysis pipeline
for such biological data generally consists of a chain of tools, in which the out-
put of one tool is the input for the next tool. Errors introduced in the begin-
ning of the analytical chain continue, with potentially severe effects on the final
results. In this thesis, tools were combined largely by hand because that gives
most flexibility and best error control. Work-flow management approaches such as
Galaxy (Goecks et al., 2010), or integrated approaches as the commercial package
CLCBio (http://www.clcbio.com/), may reduce the work load of combining tools.
However, they do not safeguard against error propagation. By the nature of error
propagation, such errors will only be discovered by an end-user (Hamilton and
Buell, 2012), when using the final result of the analysis for interpretation, further
experimentation or, in case of plant breeding, selection.

In case of the identification of Snf2 family members, publicly available
genome assemblies and annotations were indeed identified as sources of error. An
example was encountered in potato, where a considerable number of Snf2 family
members was absent from the at-that-time actual genome annotation and could
only be detected by iterative rounds of homology-based gene prediction. Such a
careful approach minimizes errors in the gene models and facilitates downstream
analyses. However, due to the lack of community-based platforms, the improved
annotation remains hidden as supplementary information of the respective publi-
cation (Bargsten et al., 2013). When annotation information is scattered among
multiple publications, it requires a lot of manual work to piece everything together.
In particular non-model plants suffer from this situation.

Better situations could be supplied by bioinformatics approaches spanning
multiple genome projects that were recently put into practice (Loveland et al.,
2012; Sterck et al., 2012; Lee et al., 2013a) and deserve more funding. Such
community-based efforts now focus on structural genome annotation, but con-
quering functional annotation should be considered as one of the main future
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challenges of plant genome data management and maintenance. The integration
of analyzed gene families into databases is one essential requirement for systematic
analyses of function (Martinez, 2011). Integrated gene family data can provide a
useful resource for plant breeders, first for the correct identification of orthologs
and, second, to generate agronomically relevant leads. An example lead would be
the expansion of the stress-related DRD1 subfamily in tomato (chapter 3).

Gene family analysis is only a step into inferring potential functions of gene
family members. The analyses in chapter 3 show that it is not feasible to infer
more precise functional characteristics based on sequence data alone. The function
particularly difficult to infer is the biological process in which a gene product is
involved. The more detailed the biological process is desired to be, the more difficult
this is. For breeders, knowledge of the biological process would seem to be a very
useful description of function. To improve the inference of function, additional
information sources than sequence data alone are necessary (Rentzsch and Orengo,
2009). The integration of multiple, complementary data sources presented in ways
that help interpretation is one of the many challenges for future bioinformatics.
Rich and often complementary information sources include biological networks of
either protein interactions, co-expression of genes or otherwise.

In chapter 4 of this thesis, it is demonstrated that such biological networks
can improve the inference of function significantly, especially in absence of ex-
perimental data. Function prediction methods, such as BMRF, require existing
(training) data commonly in the form of experimentally annotated gene functions
to achieve a high performance. This training data is needed to propagate function
information via the connections of a biological network to unannotated proteins.
Plants, with the exception of Arabidopsis and rice, lack such training data. To
be able to apply BMRF in such environments, we combined BMRF with the
sequence-based method Argot2 (Falda et al., 2012). Argot2 was used to create a
high quality training data (seed) set for BMRF. The combination of sequence-
and network-based function prediction obtained by seeding BMRF with Argot2
offers significant benefits over applying these methods separately. In this constel-
lation, not only the prediction performance for biological processes was improved
markedly, but also plant species with a low amount of training data could be anno-
tated consistently. This opens up opportunities to generate predictions for many
so far unannotated proteins. In the context of the study, we predicted functions for
Oryza sativa (rice), Medicago truncatula (barrel clover), Glycine maz (soybean),
Populus trichocarpa (poplar) and Solanum lycopersicum (tomato).

Even though the sequence-based prediction algorithm can be easily substi-
tuted by other methods, such as Blast2GO (Conesa et al., 2005), we chose Argot2
because of its performance in CAFA (Radivojac et al., 2013). This flexibility com-
bined with the availability of RNA-seq-based co-expression networks (Marguerat
and Béhler, 2010) will make this network-based method a powerful and attractive
addition to sequence-based protein function prediction. The approach strongly
depends on accurate input data. First, function annotation transferred via ho-
mology from model organisms, such as Arabidopsis, to an unannotated protein

130



GENERAL DISCUSSION

need to be correct. Correct in terms of annotation in the model organism and
in terms of detected homology between an annotated and unannotated protein.
Errors in this step lead to error propagation in BMRF, as it merely propagates
the seed annotation via the network to unannotated proteins. A careful selection
of the sequence-based method is therefore important. Second, the quality of the
biological network used by BMRF directly affects the predictions. In analyses as
presented and developed in chapter 4, network data is used as input without any
filtering steps. Network data generated by experiments, such as yeast two-hybrid
or co-expression, often come with a potentially high level of noise (Zhu et al., 2013)
and disturbing topological properties. Noise is inherent in biological networks. In
particular in lowly expressed genes, stochastic effects can become prominent, lead-
ing to random connections in networks (Raser and O’Shea, 2005). In addition, the
overlay of two fundamentally different network topologies, modular and scale-free-
like, could affect function prediction negatively. Function prediction algorithms,
such as BMRF, may improve their performance upon removal of such disturbing
elements. These effects are arguably the downside of experimentally acquired data.
For example it has been shown in genome assembly that breaking up reads into
shorter k-mers is very advantageous (Compeau et al., 2011). Another example is
the Snf2 gene family analysis (chapter 3). Focusing on the core region of a protein,
ignoring more than 50% of the sequence, is sufficient to reconstruct the complete
gene family tree accurately. The concept of noise in combination with data neces-
sity could imply that the prediction of protein function is improved when noisy
data are identified and removed.

In chapter 5 of this thesis, the influence of noise on prediction performance
is evaluated by assessing network topology and removing nodes. Proteins that
are highly connected in a network were identified as disturbing elements. These
elements could connect unrelated proteins, misleading function prediction algo-
rithms. Such proteins tend to be subject to intensive investigation due to their
essential role for an organism and tend to involved in a high number of distinct
biological processes (Jeong et al., 2001; He and Zhang, 2006). Such characteristics
can lead to prediction bias and often contain — following the definition of informa-
tion by Shannon (Shannon, 1948) — low functionally relevant information (Gillis
and Pavlidis, 2012). The results as presented in chapter 5 show that identifying
and removing such proteins (and their connections) improves the performance of
BMREF significantly. The identification and removal of noise intrinsic in biological
data also positively affects the actual computation time and storage space needed
to cope with the growing data volumes. Computation and storage time is often
overlooked as challenge in bioinformatics.

As soon as noise or redundant data are detectable and removed, perfor-
mance and computation time and space are improved. However, every data source
requires an analysis of its nature with respect to information content, possible
downstream analyses and possible errors. If one of these properties is unknown,
the data should be stored in its raw format. As soon as the intersection, the
common denominator of all analyses, is found, raw data can be transformed/com-
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pressed. But here, at the intersection between raw data and transformed data,
the error propagation starts, at least from a computational perspective. Once the
raw data is deleted, it is not possible to trace back potential errors introduced
by the transformation or compression. An example would be the bias in Illumina
transcriptome sequencing caused by non-random hexamer priming (Hansen et al.,
2010). Once the gene expression is determined and the raw data is not available
anymore, it is hardly possible to detect such bias. In biological networks, the defi-
nition of noise strongly depends on the analysis applied. Thus, a general approach
to remove noise from networks is likely to be non-existent. The raw data should
be kept available to allow multiple views on the same data.

In conclusion, different approaches to filter network data should be con-
sidered a promising future direction for bioinformatics. With further experiments
it will be possible to explore and utilize the biological networks in many differ-
ent contexts, including protein function prediction, disease gene prioritization and
network-based genome-wide association studies (Yu et al., 2013). One interest-
ing aspect in protein function prediction is the usage of tissue- or time-specific
networks. These networks would allow studying function on a finer-grained level.

The work presented in this thesis shows how the computational methods
of bioinformatics can contribute to the biologically relevant interpretation of the
large volumes of data nowadays generated by genome and transcriptome sequenc-
ing. In this way, the field of bioinformatics adds value to the production of large
volumes of data. The future of plant breeding is likely to see the sequencing of
all commercial species, subspecies and pathogens (Eggen, 2012). The next step
will be to integrate the data of the genome, the transcriptome, the epigenome
and all other omics levels that can be defined and measured, with the phenotype
of interest. Such integration and subsequent generation of usable knowledge will
be a future challenge for notably bioinformatics, in combination with the field of
biology known as »systems biology«.

Overall, the technical requirements for such integration are already met.
First efforts into integrating plant genomes are visible in projects, such as Phy-
tozome (Goodstein et al., 2012), Gramene (Monaco et al., 2014), SolGenomics
(Bombarely et al., 2011) and Ensembl Plants (Kersey et al., 2014). The core goal
will be to extend these projects to integrate all the different data sources. This will
allow exploring new ways for elucidating and understanding complex functionality.
There is no standard approach to relate the integrated data to complex biolog-
ical systems. Therefore, bioinformatics and biology will continue to merge and
eventually become so tightly integrated that the term »biology« may be sufficient
again.
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Summary

The research presented in this thesis focuses on deriving function from sequence
information, with the emphasis on plant sequence data. Unravelling the impact
of genomic elements, in most cases genes, on the phenotype of an organism is a
major challenge in biological research and modern plant breeding. An important
part of this challenge is the (functional) annotation of such genomic elements.
Currently, wet lab experiments may provide high quality, but they are laborious
and costly. With the advent of next generation sequencing platforms, vast amounts
of sequence data are generated. This data are used in connection with the available
experimental data to derive function from a bioinformatics perspective.

The connection between sequence information and function was approached
on the level of chromosome structure (chapter 2) and of gene families (chapter 3)
using combinations of existing bioinformatics tools. The applicability of using in-
teraction networks for function prediction was demonstrated by first markedly
improving an existing method (chapter 4) and by exploring the role of network
topology in function prediction (chapter 5). Taken together, the combination of
methods and results presented indicate the potential as well as the current state-
of-the-art of function prediction in (plant) bioinformatics.

Chapter 1 introduces the basis for the approaches used and developed in this
thesis. This includes the concepts of genome annotation, comparative genomics,
gene function prediction and the analysis of network topology for gene function
prediction. A requirement for the study of any new organism is the sequencing and
annotation of its genome. Current genome annotation is divided into structural
identification and functional categorization of genomic elements. The de facto stan-
dard for categorizing functional annotation is provided by the Gene Ontology. The
Gene Ontology is divided into three domains, molecular function, biological process
and cellular component. Approaches to predict molecular function and biological
process are outlined. Accurate function prediction generally relies on existing in-
put data, often of experimental origin, that can be transferred to unannotated
genomic elements. Plants often lack such input data, which poses a big challenge
for current function prediction algorithms. In unravelling the function of genomic
elements, comparative genomics is an important approach. Via the comparison
of multiple genomes it gives insights into evolution, function as well as genomic
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structure and variation. Comparative genomics has become an essential toolkit for
the analysis of newly sequenced organisms. Often bioinformatics methods need to
be adapted to the specific needs of plant genome research. With a focus on the
commercially important crop plants tomato and potato, specific requirements of
plant bioinformatics, such as the high amount of repetitive elements and the lack
of experimental data, are outlined.

In chapter 2, the structural homology of the long arm of chromosome 2 (2L)
of tomato, potato and pepper is analyzed. Molecular organization and collinear
junctions are delineated using multi-color BAC FISH analysis and comparative se-
quence alignment. We identify several large-scale rearrangements including inver-
sions and segmental translocations that were not reported in previous comparative
studies. Some of the structural rearrangements are specific for the tomato clade,
and differentiate tomato from potato, pepper and other solanaceous species. There
are many small-scale synteny perturbations, but local gene vicinity is largely pre-
served. The data suggests that long distance intra-chromosomal rearrangements
and local gene rearrangements have evolved frequently during speciation in the
Solanum genus, and that small changes are more prevalent than large-scale dif-
ferences. The occurrence of transposable elements and other repeats near or at
junction breaks may indicate repeat-mediated rearrangements. The ancestral 2L
topology is reconstructed and the evolutionary events leading to the current topol-
ogy are discussed.

In chapter 3, we analyze the Snf2 gene family. As part of large protein com-
plexes, Snf2 family ATPases are responsible for energy supply during chromatin
remodeling, but the precise mechanism of action of many of these proteins is
largely unknown. They influence many processes in plants, such as the response to
environmental stress. The analysis is the first comprehensive study of Snf2 family
ATPases in plants. Some subfamilies of the Snf2 gene family are remarkably stable
in number of genes per genome, whereas others show expansion and contraction
in several plants. One of these subfamilies, the plant-specific DRD1 subfamily, is
non-existent in lower eukaryote genomes, yet it developed into the largest Snf2
subfamily in plant genomes. It shows the occurrence of a complex series of evolu-
tionary events. Its expansion, notably in tomato, suggests novel functionality in
processes connected to chromatin remodeling. The results underpin and extend the
Snf2 subfamily classification, which could help to determine the various functional
roles of Snf2 ATPases and to target environmental stress tolerance and yield in
future breeding with these genes.

In chapter 4, a new approach to improve the prediction of protein func-
tion in terms of biological processes is developed that is particularly attractive for
sparsely annotated plant genomes. The combination of the network-based predic-
tion method Bayesian Markov Random Field (BMRF) with the sequence-based
prediction method Argot2 shows significantly improved performance compared to
each of the methods separately, as well as compared to Blast2GO. The approach
was applied to predict biological processes for the proteomes of rice, barrel clover,
poplar, soybean and tomato. Analysis of the relationships between sequence sim-
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ilarity and predicted function similarity identifies numerous cases of divergence
of biological processes in which proteins are involved, in spite of sequence similar-
ity. Examples of potential divergence are identified for various biological processes,
notably for processes related to cell development, regulation, and response to chem-
ical stimulus. Such divergence in biological process annotation for proteins with
similar sequences should be taken into account when analyzing plant gene and
genome evolution. This way, the integration of network-based and sequence-based
function prediction will strengthen the analysis of evolutionary relationships of
plant genomes.

In chapter 5 the influence of network topology on network-based function
prediction algorithms is investigated. The analysis of biological networks using al-
gorithms such as Bayesian Markov Random Field (BMRF) is a valuable predictor
of the biological processes that proteins are involved in. The topological prop-
erties and constraints that determine prediction performance in such networks
are however largely unknown. This chapter presents analyses based on network
centrality measures, such as node degree, to evaluate the performance of BMRF
upon progressive removal of highly connected hub nodes (pruning). Three dif-
ferent protein-protein interaction networks with data from Arabidopsis, human
and yeast were analyzed. All three show that the average prediction performance
can improve significantly. The chapter paves the way for further improvement of
network-based function prediction methods based on node pruning.

Chapter 6 discusses the results and methods developed in this thesis in
the context of the vast amount of generated sequencing data. Sequencing or re-
sequencing a (plant) genome has become fairly straightforward and affordable, but
the interpretation for subsequent use of this sequence data is far from trivial. The
topics addressed in this thesis, annotation of function, analysis of genome struc-
ture and identifying genomic variation, focus on this main bottleneck of biological
research. Issues discussed in connection with this work and its future are data
accuracy, error propagation, possible improvements and future implications for
biological research in crop plants. In particular the shift of costs from sequencing
to downstream analyses, with functional genome annotation as essential step, is
covered. One of the biggest challenges biology and bioinformatics will face is the
integration of results from such downstream analyses and other sources into a com-
plete picture. Only this will allow understanding of complex biological systems.
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Samenvatting

Het onderzoek dat in dit proefschrift beschreven wordt, richt zich op het bepa-
len van de functie van sequentie-informatie, met de nadruk op sequentiedata van
planten. Het ontrafelen van de rol en werking van elementen uit het genoom,
doorgaans genen, op het fenotype van een organisme is nog steeds een grote uit-
daging in biologisch onderzoek en voor moderne plantenveredeling. Een belangrijk
onderdeel van deze uitdaging is de (functionele) annotatie van dergelijke genoo-
melementen. Experimenten in het laboratorium (»natte experimenten«) kunnen
hoge kwaliteit leveren, maar zijn doorgaans tijdrovend en kostbaar. Door de op-
komst van moderne methoden om sequenties te bepalen worden enorme hoeveelhe-
den sequentiedata gegenereerd. Deze gegevens worden samen met de beschikbare
experimentele gegevens gebruikt om functies af te leiden en te voorspellen met
behulp van bioinformatica. Met combinaties van bestaande bioinformatica metho-
den worden in dit proefschrift de relaties tussen sequentie-informatie en functie
onderzocht op de niveaus van chromosoomstructuur (hoofdstuk 2) en genfamilies
(hoofdstuk 3). De bruikbaarheid van interactienetwerken voor het voorspellen van
functies wordt gedemonstreerd door eerst een bestaande methode aanzienlijk te
verbeteren (hoofdstuk 4) en vervolgens door het analyseren van de rol van de to-
pologie van de netwerken voor dergelijke functievoorspellingen (hoofdstuk 5). De
combinaties van methoden en resultaten als hier gepresenteerd geven zicht op de
mogelijkheden alsook de huidige stand van ontwikkeling van de voorspelling van
functies met behulp van (op planten gerichte) bioinformatica.

Hoofdstuk 1 introduceert de achtergrond voor de benaderingen die in dit
proefschrift worden toegepast en ontwikkeld. Dit omvat de begrippen genooman-
notatie, vergelijkende genoomanalyse, voorspelling van de functie van genen en
de analyse van netwerktopologie voor gen-functie voorspelling. Voorwaarde voor
dit type onderzoek aan een nieuw organisme is de sequentie en annotatie van het
genoom van dat organisme. Genoomannotatie wordt momenteel onderverdeeld in
structurele identificatie en functionele indeling van genoomelementen. De de facto
standaard voor het indelen van functionele annotatie is de gen-ontologie. Deze is
verdeeld in drie domeinen: moleculaire functie, biologisch proces en cellulaire com-
ponent. Methoden worden besproken waarmee de domeinen moleculaire functie
en biologisch proces voorspeld kunnen worden. Nauwkeurige functievoorspelling
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hangt over het algemeen af van de beschikbaarheid van data van doorgaans ex-
perimentele oorsprong, die verbonden kunnen worden aan genoomelementen zon-
der annotatie. Voor planten zijn dergelijke data vaak nog niet beschikbaar. Dit
is een grote uitdaging voor de huidige algoritmen die functies voorspellen. Voor
het ontrafelen van de functie van genoomelementen is vergelijkende genoomana-
lyse belangrijk. Het vergelijken van verschillende genomen geeft inzicht in evolutie
en functie, alsook in genoomstructuur en variatie. Vergelijkende genoomanalyse
is een essentieel instrument voor de analyse van nieuw gesequencete organismen.
Bioinformatica methoden moeten meestal worden aangepast aan de specifieke ka-
rakteristieken van het genoomonderzoek aan planten. Specifieke kenmerken voor
de bioinformatica van planten, met focus op de commercieel belangrijke gewassen
tomaat en aardappel, zijn het goed kunnen omgaan met de grote hoeveelheden
repetitieve elementen en met het niet beschikbaar zijn van experimentele data.

In hoofdstuk 2 wordt de structurele homologie van de lange arm van chro-
mosoom 2 (2L) van tomaat, aardappel en peper geanalyseerd. Moleculaire organi-
satie en co-lineaire chromosomale verbindingen worden geanalyseerd met behulp
van meer-kleuren BAC FISH en gedetailleerde sequentievergelijkingen. We iden-
tificeren diverse grote herschikkingen, met inbegrip van inversies en grote trans-
locaties, die niet werden beschreven in eerdere studies met vergelijkingen tussen
genomen. Sommige structurele herschikkingen zijn specifiek voor de tomatengroep,
en onderscheiden tomaat van aardappel, peper en andere soorten van de nachtscha-
defamilie (Solanaceae). Er zijn veel kleine verschillen in syntenie, maar de lokale
gen-omgeving is grotendeels bewaard gebleven. De gegevens suggereren dat tijdens
de soortvorming in het geslacht Solanum regelmatig zowel intra-chromosomale
herschikkingen op grote afstand, als lokale herschikkingen van genen plaats heb-
ben gevonden. Kleine veranderingen komen vaker voor dan grote verschillen. De
aanwezigheid van transposons en andere repetitieve sequenties op of dichtbij chro-
mosomale breekpunten kan erop duiden dat de herschikkingen afhankelijk zijn van
dergelijke repetitieve sequenties. De 2L topologie van de voorouders is gereconstru-
eerd en de mogelijke evolutionaire gebeurtenissen die hebben geleid tot de huidige
topologie worden besproken.

In hoofdstuk 3 analyseren we de SNF2 gen familie. ATPases van de SNF2
familie zijn onderdeel van grote eiwitcomplexen en verantwoordelijk voor ener-
gievoorziening tijdens de reorganisatie (het remodelleren) van chromatine. Het
precieze werkingsmechanisme van veel van deze eiwitten is grotendeels onbekend,
maar ze beinvloeden veel processen in planten, zoals de reactie op omgevingsstress.
De analyse in hoofdstuk 3 is de eerste uitgebreide studie van SNF2 familie ATPases
in planten. Sommige subfamilies van de SNF2 gen-familie hebben een opmerkelijk
stabiel aantal genen per genoom, terwijl andere families in verschillende planten
juist relatief meer (dus expansie) of juist minder (dus contractie) genen hebben.
De plant-specifieke DRD1 subfamilie ontbreekt in lagere eukaryote genomen, maar
heeft zich ontwikkeld tot de grootste SNF2 onderfamilie in plantengenomen. Dit
duidt op een complexe serie evolutionaire gebeurtenissen. Deze uitbreiding van het
aantal genen suggereert dat vooral in tomaat nieuwe biologische functionaliteit is
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ontstaan in processen gerelateerd aan chromatine reorganisatie. De resultaten brei-
den de bestaande indeling van SNF2 subfamilie uit. Dit helpt om de verschillende
functionele rollen van SNF2 ATPases te bepalen. Toekomstige veredeling met deze
genen kan hiermee bijdragen aan betere tolerantie tegen omgevingsstress en op die
manier aan meer opbrengst.

In hoofdstuk 4 wordt een nieuwe aanpak voorgesteld voor een betere voor-
spelling van de functie van eiwitten in termen van biologische processen. Dit is
met name aantrekkelijk voor eiwitten in plantengenomen met weinig annotatie.
De combinatie van de op netwerken gebaseerde voorspellingsmethode Bayesiaanse
Markov Random Field (BMRF) met de op sequentievergelijkingen gebaseerde
voorspellingsmethode Argot2 geeft significant verbeterde voorspellingen vergele-
ken met elk van de methoden afzonderlijk en ook vergeleken met Blast2GO. De me-
thode is gebruikt om voor alle bekende eiwitten (proteomen) van rijst, rupsklaver,
populier, soja en tomaat de betrokkenheid bij biologische processen te voorspellen.
Analyse van de overeenkomsten tussen DNA sequentie en voorspelde functie laat
talrijke gevallen zien waarin eiwitten bij verschillende biologische processen be-
trokken zijn terwijl ze qua sequentie erg op elkaar lijken. Voor diverse biologische
processen zijn voorbeelden van dergelijke mogelijke divergenties gevonden. Dit be-
treft vooral processen betrokken bij cel-ontwikkeling, regulatie en reactie op een
chemische stimulus. Voor eiwitten met gelijkende sequenties moet daarom in de
analyse van de evolutie van plantengenen en -genomen rekening gehouden worden
met dergelijke verschillen in de functionele annotatie van biologische processen.
Op die manier kan de integratie van netwerk-gebaseerde en sequentie-gebaseerde
voorspelling van functie de analyse van evolutionaire verwantschappen van plan-
tengenomen versterken.

In hoofdstuk 5 wordt de invloed van de topologie van het netwerk on-
derzocht op de werking van op netwerk-gebaseerde algoritmen voor functievoor-
spelling. De analyse van biologische netwerken met behulp van algoritmen zoals
Bayesiaanse Markov Random Field (BMRF) leidt tot waardevolle voorspellingen
van de biologische processen waarin eiwitten een rol spelen. De topologische eigen-
schappen van, en beperkingen in, zulke netwerken die de kwaliteit van dergelijke
voorspellingen bepalen zijn echter grotendeels onbekend. Dit hoofdstuk presen-
teert een analyse op basis van netwerkparameters, zoals knooppuntverknoping,
om de prestaties van BMRF te evalueren bij geleidelijke verwijdering van zeer
sterk verknoopte knooppunten. Drie verschillende eiwit-eiwit interactienetwerken
met data van zandraket, mens en gist zijn geanalyseerd. Alle drie laten zien aan
dat gemiddeld de voorspellingen aanzienlijk kunnen verbeteren. Dit kan leiden tot
verdere verbetering van netwerk-gebaseerde functievoorspelling op basis van het
verwijderen van knooppunten.

Hoofdstuk 6 bespreekt de resultaten en methoden die zijn ontwikkeld in dit
proefschrift in de context van de enorme hoeveelheid gegenereerde sequentie data.
Het sequencen of her-sequencen een (planten)genoom is al met al simpel en betaal-
baar geworden, maar de interpretatie van deze data voor uiteindelijke toepassing
is verre van triviaal. De onderwerpen die in dit proefschrift ter sprake komen,
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annotatie van functie, analyse van genoomstructuur en het identificeren van ge-
noomvariatie, richten zich allemaal op dit belangrijkste knelpunt van biologisch
onderzoek. Kwesties besproken in verband met dit werk en de toekomst daarvan
zijn de nauwkeurigheid van de gegevens, foutenpropagatie, mogelijke verbeterin-
gen en toekomstige implicaties voor biologisch onderzoek in gewassen. Vooral de
verschuiving van de kosten van sequencen naar analyse, met functionele genoom-
annotatie als essentiéle stap, wordt belicht. Een van de grootste uitdagingen voor
biologie en bioinformatica is de integratie van de resultaten van dergelijke data-
analyses en andere informatie in een compleet plaatje. Alleen dat zal het mogelijk
maken om complexe biologische systemen te begrijpen.
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