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Introduction

1 Introduction

The widely accepted systems biology approach to problems in plant science and the
rapid development of fast and accurate high-throughput measurement techniques
cause increase, both in size and complexity, of the sets of experimental results ob-
tained in laboratory, greenhouse or field experiments. The observations of tradition-
ally interesting phenotypic traits pertaining to yielding capacity or stress resistance
of plants are now usually supplemented by the so-called phenotypic ‘-omics’ traits,
allowing to get insight into molecular, protein and metabolomic layers of plants.
In addition to that, the number of data sets obtained by different research groups
potentially interesting for building-up the knowledge about the plant organisms in-
creases enormously. A proper integration of these data, both within and between
experiments, is required to get new knowledge about plant systems. Such integra-
tion can not be achieved without tools that would be able to effectively store data
and accompanying metadata, query appropriate databases, search for required in-
formation, and compare the obtained results. Such tools require building standards
in the area of understanding of experimental designs, description of data complexity,
data exchange formats and protocols, data compression, and should use generally
acknowledged principles of statistical data processing; they must obey standard rules
of metadata annotation and must be able to properly transfer these annotations to
the computed results.

To achieve the goals described above we call upon the concept of ‘sufficiency’, widely
used in mathematical statistics for theoretical considerations. To our knowledge, this
concept has not been used so far in a coherent way to solve practical problems of
experimental data management. We show that it can be applied to address several
aspects, in particular data compression and data integration, and in consequence
can be used for operations required for effective utilization of growing volumes of
phenotypic data in systems biology.

Another application of the results produced by the presented approach is to use
them as input to other computations. From our project’s point of view, the most
important case is related to building the phenotype-genotype maps by localization of
the quantitative traits loci (QTL) or by genome-wide association studies (GWAS).
For numerical optimization it is better to use in those procedures not the raw data,
but properly computed parameters allowing e.g. to avoid lengthy computations
when no phenotype-genotype relation is expected; sufficient statistics can play also
this role.

The present report concerns description of the necessary theoretical background.
The numerical implementation is described for the case of factorial experiments
and linear mixed models only, and currently depends on functions that could be
found in open-source R packages. Extensions of the methodology and numerical
procedures to other experimental situations and models are under development, in
particular in the area of repeated measurement experiments with application in
image phenotyping. In this report we also present a first version of a web tool
performing the computations, and describe possible applications of this service.
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Results (if applicable, interactions with other workpackages)

2 Sufficiency

2.1 Definition, practical meaning, example

The concept of sufficiency introduced by R. A. Fisher allows to summarize data
without any loss of information. Consider the problem of statistical inference about
an unknown parameter § based on a sample y = (y1,¥2,...,%,)T. All the informa-
tion about € is of course contained in y. However, we might wish to reduce data,
especially when the sample size n is large. Data reduction can be expressed in terms
of a particular statistic 7'(y) that captures all information about 6 from the sample,
i.e., that is sufficient for 6. A sufficient statistic is formally defined as follows.

Definition 1. A real valued (or vector valued) statistic 7'(y) is said to be sufficient
for 6 if the conditional distribution of the random sample y, given 7' = t does not
depend on 6.

The practical meaning of the sufficiency is the following. If T'(y) is a sufficient
statistic for 6, then any inference about 6 should depend only on 7'(y). Thus, in
recording the experiment results it is sufficient to record 7" only, assuming model
adequacy. As an example consider a random sample y = (y1,%2,...,yn)? from
normal distribution N(6,1). The statistic 7" = Y., y; is sufficient for . In the
case of normal distribution N(0,0?) the statistic T(y) = (X1, yi, 2orq y2)T is
sufficient for the vector of parameters (6,0%)7.

2.2 Sufficiency in linear models

If we restrict ourselves to linear models in which we estimate parameters by linear
functions of observations, we can consider the property called ‘linear sufficiency’.

Assume model y = X3 + e, where E(y) = X3 and Var(y) = I,,. The best linear
unbiased estimator (BLUE) of the expectation vector X /3 has a form

BLUE(XB) = X(XTX) X"y,

where A~ denotes a generalized inverse of the matrix A. Baksalary and Kala (1981)
defined a linear statistic preserving BLUE(X 3), later on called linearly sufficient by
Drygas (1983). It is defined as follows.

Definition 2. A linear statistic F'y is said to be linearly sufficient for X3 if there
exists a matrix T" such that T'F'y is the BLUE of X 3.

An example of a quadratically sufficient statistic for X3 is Fy = X y. Drygas
(1983) observed that under normality assumption, y ~ N(Xg3,I,), a linearly suffi-
cient statistic is also sufficient in usual sense.

Mueller (1987) extended the concept of linear sufficiency to quadratic sufficiency in
the context of linear model y = X3 + e, where E(y) = X3 and Var(y) = o*V
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with o2 > 0 unknown. A statistic (Ly,yT Ty) is called quadratically sufficient if
Ly is linearly sufficient and there exists a symmetric matrix A and a real a such
that y”" LT ALy + ay” Ty is the best quadratic unbiased estimator (BQUE) of 2.

An example of a linearly sufficient statistic for (X3,02)7 in a model with V = I,
is Fy = (XTy, y"My)T, where M = I,, — X(XTX)_XT. Under normality
assumption a quadratically sufficient statistic is also sufficient in usual sense.

Let y = X3+ Zu+ e be a mixed linear model, where u = (ul,...,uT)7 is a vector
of uncorrelated random effects and E(y) = X8, Var(y) =V =37, 02Z,ZT +
o3I, with o > 0, af > 0,7 = 1,...,s, unknown. Under normality assumption

u~ N(0,0%1,), e ~ N(0,021,), an example of sufficient statistic for (X3, 03,0%)7
is Fy =[(X : 2)Ty,y"My|T with M =1, — (X : Z)[(X : 2)T(X : 2)]7 (X :
Z)T. For s > 1 the above statistic is sufficient for (X3,02,...,02)T under some
balancedness conditions. In general this statistic is a basis of so-called Henderson
mixed model equations leading to commonly used estimators and predictors in mixed

linear model; cf. McLead et al. (1991) and Witkovsky (2012).

3 The method for factorial experiments

3.1 Fixed effects model

Assume that an experiment is of the factorial type, that is, observations (samples)
are classified by a number of factors A, B, C, ... , with replications forming a
completely randomized design. The data is provided as a properly formatted set
{y, T} consisting of metadata concerning the treatment structure (in the minimal
case, the columns of factor levels) - forming a text matrix 7", and data y, a vector
of observations of a trait (in practice we have many traits y, so observations also
form a matrix, but we consider here one trait for simplicity of the description). In
the statistical model we want to consider effects of factors A, B, C, ..., and of their
interactions AB, AC, ABC, ... . It is possible that the experiment is not balanced
(different number of replications in subclasses).

The model usually used for this situation is of the form y = X3 + e with e ~
N(0,0%I), where

X=1:X4:Xp:Xc:XaB:..]

with each sub-matrix constructed ‘in the usual way’ of 0-1 indicator columns describ-
ing the allocation of samples to factor levels and to their combinations, constructed
from T'. X is not of full rank, but each submatrix for a given factor or combination
of factors is. The easiest way to estimate X3 would be to use the previously intro-
duced formula for BLUE(X 3) with any choice of the generalized inverse. However,
as we want to extend the procedure to a mixed model later, our method is as follows.
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We will follow the procedure applied in many statistical packages (Genstat, R) that
consists of assuming a set of linear restrictions on model parameters in such a way
that the remaining (unrestricted) parameters can be estimated. The numerical pro-
cedure in R assumes the value of zero for some parameters (technically, it removes
some columns of matrix X). In our notation, it corresponds to imposing on the pa-
rameters vector 3 = (Bg, ﬁg)T a linear restriction B, = 0 and to solve the resulting
system of normal equations X X 5 = X py, with X g of full column rank (equal to
the rank of X'). Observing that the matrix

( (X£§R)_1 8 )

is a generalized inverse of the matrix

XiXs X1X
Ty _ R“YR R0
XX‘(XEXR XOTXO)’

where X = (X : X,), we get that the vector 8 = (AE,OT)T is a solution of the
original system of normal equations X7 X3 = X Ty. It is not a unique solution, yet
for a given estimable function p” 3 the statistic pTB is its unique best linear unbiased
estimator. A vector p defining an estimable function p”3 can be represented as
p = X711, for some vector I; i.e., it is a column or a linear combination of columns
of the matrix X”. To estimate Var(pTB8) = o2pT (X7 X )~ p we can use the matrix
(X }';X r)~! and the usual estimate of 0. Note that for estimable function p”3
the expression p” (X T X)~p is invariant with respect to the choice of a generalized
inverse of X7 X.

In particular, the BLUE(X8) = i = X z3p gives the estimated means (expected
values) for all experimental combinations. The variance (and so the standard error)
of this estimator can be also obtained by the general formula given above. Subse-
quently, for any X g being a sub-matrix of X corresponding to a factor or combi-
nation of factors, the formula (X=X )~ !X Tfi provides the estimated (marginal)
means for levels of individual factors or their combinations; the standard error of
this estimator is obtained as above.

3.2 Mixed model

In a more general situation we consider a factorial experiment performed in an
experimental design appropriate for the set of applied units (pots, plots, fields).
In this case the data set is of the form {y,T, B}, with B denoting the matrix of
meta-data describing the block structure of the experiment. In the experiments
conducted in plant science the examples of designs which can be included here are:
(incomplete) block designs, row-column designs, and latin square designs. In this
case the commonly used model is the mixed model with the treatment structure T,
defining its fixed part, and the block structure B — the random part.
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First we note that the procedure described previously for the fixed model can be used
in the model y = X3 + e with e ~ N(0,02V), where V is known and nonsingular.
We transform this model to y = v=u 2y and then we use the same method taking
Xp=V12Xp and X, = V1/2X,.

Then, let y = XB + Zu + e be a mixed linear model, where u = (u?,...,ul)T
is a vector of uncorrelated random effects and E(y) = X3, Var(y) = V =
S 02Z,Z] + 021, with 03 > 0,02 >0, i =1,...,s, unknown. The estimation
procedure is as follows. First, variance components o;,7 = 0,...,s are estimated
by the residual maximum likelihood (REML) method; cf. McLean et al. (1991)
and Wikovsky (2012). Then linear estimable functions of 3 are estimated by em-
pirical BLUE; i.e., using the approach of fixed model y = X3 + e with Var(y)
replaced by V = 3"°_,62Z,Z] + 631, where 67,i =0,...,s are REML estimates
of 62,i=0,...,s.

3.3 Dimensionality of sufficient statistics and model reduc-
tion

The sufficient statistics pertaining to the fixed part of the model, X Ty, is easily
calculated, but its dimension is large, equal to the number of columns of X. As we see
from the derivation a vector of smaller dimension, Bg, of independent parameters,
is sufficient to reconstruct the estimators of expectations. This observation is useful
when we consider application of the procedure for data compression.

Also, we should note that the dimension of the vector of sufficient statistics depends
on the model — namely, on the number of considered interactions. The model can be
reduced to a version with an acceptable fit to the data by ANOVA-based (or other)
procedures of model selection by removing interactions which are not significant.
We plan to use this possibility in numerical implementation of the procedure.

4 Numerical implementation

We implement the estimation and testing procedure in R environment using the lme4
library and other necessary functions. For a given data set, REML computations
are performed, and the results comprising:

- vector BL, with its covariance matrix,
- vector S of variance components estimates, including the error variance,

are saved to proper structures. We consider the following versions of the reporting
scenario for the input data set {y, T, B}:

a) A data set {y, T, B, ,3%, S } is returned. This data set can be used for compressed
storage of the data. It cannot be reported to the user, as the interpretation of the
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estimates depends on the estimation procedure, and the inverse procedure based on
the matrix T has to be applied for production of interpretable results.

b) A data set {y,T, B, 1, S} is returned. This data set is a useful version of the
results, but marginal means must be formed to get interpretable estimates.

b) A data set {y, T, B, fiu, ftg, ftap,---, S} is returned. This data set is the final
version of the results which could be used for all aims that were indicated in the
introduction.

NOTE: the algorithm for computation of the variances of variance components’
estimates is under development.

5 Phenalyse tool

Phenalyse is a web tool calculating sufficient statistics for ISA-TAB formatted
dataset. The program performs statistical analysis of data coming from pheno-
typing experiments. Data must be provided in zipped ISA-TAB (ISArchive) format,
and should contain well annotated phenotyping assays. The application provides
an interface (Fig.1) to upload a zipped dataset, run the analysis and download the
results of the processing as

- a text file containing the computed sufficient statistics,

- updated ISArchive, including the newly created sufficient statistics file and refer-
ences to it (dedicated column in the assay file),

- modified ISArchive, containing only the newly created statistics, with all the in-
termediate data and its reference removed from the set.

Statistical computations are performed in R environment. For each phenotyping
assay-study pair from the uploaded dataset a separate statistical analysis is per-
formed. For each observed trait a mixed linear model is constructed and evaluated.
Based on ISA-TAB file annotations specific parts of the model are defined. All vari-
able characteristics of a dataset are assumed to belong to the fixed part of the model.
Random parameters are those describing the design of the experiment (e.g. plot,
block, row, column, field, rank, replication); the remaining factors are also assigned
to the fixed part. Parameters of the model are estimated using REML procedure
from Ime4 library, based on which mean values of traits and their variances are com-
puted. Results for each assay-study pair are saved in the ’sufficient statistics file’,
whose format is specified in ISA-TAB phenotyping configuration. After successful
processing the assay file is updated to include references to statistics file in Sufficient
Statistics File column, and an archive containing enriched dataset is constructed and
set for download.

Phenalyse is an open source Java application using R environment for statistical com-
putations, Spring framework and JPA2/Hibernate ORM layer for MySQL database;
it runs on Jetty/Tomcat server.
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6 Applications

Possible application of the Phenalyse tool can be as follows (to be developed in the
project):

1) Production of a compressed phenotypic dataset in ISA-TAB format: the input
ISArchive is transformed to an output containing the sufficient data file, but not
the raw and derived data files; as an option, the set of sufficient statistics can be
reduced to contain only the significant interactions.

2) Construction of compressed datasets for storage in a database: data sets with
sufficient, or sufficient of minimal dimension, statistics are stored in a database
instead of the raw data. In the latter case, the database must be equipped with an
algorithm converting the minimal statistics to interpretable parameter estimates.

3) Data queries and comparisons: ISArchives with parameter estimates can be
queried for meta-data or parameter values; different datasets can be compared.

4) Supplementary data publication: ISArchives with parameter estimates can be
used as information supplementing published papers.

5) Data integration: data sets from different study/assays can be integrated at the
level of samples or model parameters.

6) Production of input for another procedures: phenotypic ISArchive is processed
to obtain the dataset for another analysis, e.g. a QTL/GWAS application. Within
Phenalyse the model is reduced to the one with just significant interactions so that
unnecessary computations to find non-existing QTL by environment interactions are
avoided.

7 Example

The exemplary data is a set concerning 5 varieties of barley treated with drought
in a block design. The design is taken from a real experiment, but observations of
the traits are fictitious. The data set and results are presented in Fig. 2-7. Two
situations are presented:

- in Fig. 6, the ISA-TAB formatted data set with parameter estimates as sufficient
statistics in the model containing the interaction of two factors,

- in Fig. 7, the ISA-TAB formatted data set with sufficient statistics of minimal
dimension for the model with main factor effects only.

Due to the property of sufficiency, the whole information concerning all the factor
levels and their combinations under the model of no interaction can by recovered
from the data shown in Fig. 7 using the methodology presented in this report. The
difference in number of data corresponds to the gain of storage size (compression)
obtained by application of the sufficiency principle.
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8 Other models

The theory presented in Section 2 is a general one and can be applied to other situa-
tions arising in plant experiments. For example, sufficient statistics can be computed
for regression models. In this case, the model matrix is usually of full column rank,
so that computation of the sufficient statistics with minimal dimension is equiva-
lent to usual parameter estimation. The methods reported here are applicable if
the regression model is of a mixed type and includes fixed and random parameters
pertaining to factors, and regression parameters pertaining to explanatory variables.
Numerical implementation for this situation is under development.

The theory can also be used for the case of experiments with repeated measure-
ments in time. For such cases, several models are described in the literature. For
phenotyping the most interesting situation of this type is the ‘image phenotyping’
procedure carried out in modern installations. The experiments are of factorial type.
Usually no blocking is involved because it can be assumed that the environmental
conditions (apart from the differences resulting from applied treatments) are the
same for all samples (pots). However, the measurements are done over time, usually
once per day for a period required to record the plants’ reaction. Possible modelling
approaches for this data are:

a) mixed models with correlated errors,

b) models with (optional) factorial structure and time effects modelled as a regression
function of a number of parameters, e.g. EMAX model,

¢) models with (optional) factorial structure and time effects modelled by functional
data analysis approaches (Ramsay and Silverman, 2005).

Numerical implementations for these situations are being developed in collaboration
with project partners.

9 Conclusions

We have used the theory of sufficiency to set up the basis for standardised processing
and management procedures for phenotypic data obtained in plant experiments.
A basic numerical implementation for the case of linear mixed models have been
described. A model of a web tool performing fundamental operations has been
constructed. As planned in the project, the methodology is under development
directed towards inclusion of other experimental situations and optimization for big
data sets.
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Source Characterist Term Term Characteristics Term Term Characterist Term | Term Protocol Protocol Factor Term | Term
Name ics[Organis Source Accession [Infra-specific | Source REF Acces ics[Organis Source Accession REF REF Value[Treat Source |Accessio
m] REF Number name] sion  m part] REF  Number | ment] |REF  n

sourcel Hordeum vul NCBITaxonxon_112509 Sebastian EURISCO stem PO 9047 drought apsample co Control
source2  Hordeum vulNCBITaxonxon_112509 Sebastian EURISCO stem PO 9047 drought apsample co Drought
source3  Hordeum vulNCBITaxonxon_112509 Amarena [EURISCO stem PO 9047 drought apsample co Control
source4 Hordeum vulNCBITaxonxon_112509 Amarena 'EURISCO ‘stem PO 9047 drought apsample co Drought
source5  Hordeum vulNCBITaxonxon_112509 Nagradowicki EURISCO stem PO 9047 drought apsample co Control
source6  |Hordeum vulNCBITaxonxon_112509 Nagradowicki 'EURISCO stem PO 9047 drought apsample co Drought
source7  Hordeum vulNCBITaxonxon_112509 HOR 198 |EURISCO stem PO 9047 drought apample co Control
source8  |Hordeum vulNCBITaxonxon_112509 HOR 198 EURISCO stem PO 9047 drought apsample co Drought
source9  Hordeum vulNCBITaxonxon_112509 Basza |EURISCO ‘stem PO 9047 drought apsample co Control
source10  Hordeum vulNCBITaxonxon_112509 Basza EURISCO stem PO 9047 drought apsample co Drought

Fig. 2. The ISA-TAB study file for example data
Source Sample Factor Term Term Raw Protocol Derived Data File Trait Definition File
Name Name Value[Block] Source Accession Data REF

REF Number File
sourcel sample1 1 data transfo a_study1_processed_data.xlsx  a_study1_tdf.xIsx
source1 |sample2 2| data transfo a_study1_processed_data.xlsx  a_study1_tdf.xlIsx
source1 |sample3 3 data transfo a_study1_processed_data.xlsx  a_study1_tdf.xlsx
source1 sample4 4 data transfo a_study1_processed_data.xlsx  a_study1_tdf.xlIsx
sourcel sample5 5 data transfo a_study1_processed_data.xlsx  a_study1_tdf.xIsx
source2 |sample6 1 data transfo a_study1_processed_data.xlsx  a_study1_tdf.xIsx
source2 sample7 2| data transfo a_study1_processed_data.xlsx  a_study1_tdf.xlsx
source2 sample10 5 data transfo a_study1_processed_data.xlsx  a_study1_tdf.xIsx
source3 samplei 1 data transfo a_study1_processed_data.xlsx  a_study1_tdf.xlsx
source3 |sample12 2| data transfo a_study1_processed_data.xlsx  a_study1_tdf.xlsx
source3 |sample13 3| data transfo a_study1_processed_data.xlsx  a_study1_tdf.xlIsx
source3 'sample14 4 data transfo a_study1_processed_data.xlsx  a_study1_tdf.xlsx
source3 sample15 5 data transfo a_study1_processed_data.xlsx  a_study1_tdf.xlsx
source4 |sample16 1 data transfo a_study1_processed_data.xlsx  a_study1_tdf.xlsx
source4 sample17 2 data transfo a_study1_processed_data.xlsx  a_study1_tdf.xlIsx
source4 'sample18 3 data transfo a_study1_processed_data.xlsx  a_study1_tdf.xIsx
source4 sample19 4 data transfo a_study1_processed_data.xlsx  a_study1_tdf.xIsx
source4 sample20 5 data transfo a_study1_processed_data.xlsx  a_study1_tdf.xlsx
sourceb sample21 1] data transfo a_study1_processed_data.xlsx  a_study1_tdf.xlIsx
sourceb 'sample22 2| data transfo a_study1_processed_data.xlsx  a_study1_tdf.xIsx
sourceb sample23 3 data transfo a_study1_processed_data.xlsx  a_study1_tdf.xIsx
sourceb sample24 4 data transfo a_study1_processed_data.xlsx  a_study1_tdf.xlsx
sourceb |sample25 5 data transfo a_study1_processed_data.xlsx  a_study1_tdf.xlIsx
sourceé sample26 1 data transfo a_study1_processed_data.xlsx  a_study1_tdf.xIsx
source6 sample27 2 data transfo a_study1_processed_data.xlsx  a_study1_tdf.xlsx
source6 sample28 3 data transfo a_study1_processed_data.xlsx  a_study1_tdf.xlsx
source6 |sample29 4 data transfo a_study1_processed_data.xlsx  a_study1_tdf.xlIsx
sourceé sample30 5 data transfo a_study1_processed_data.xlsx  a_study1_tdf.xlsx

Fig. 3. The ISA-TAB assay file for example data
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Project deliverable: transPLANT tran@ ﬁ

Sample Name Trait Value[len] Trait Value[CoTerm Source Term Accessiolrait Value[Stem
sample1 0,7221 green |PATO 320 1,08
sample2 0,4288 yellow PATO 324 1,15
sample3 0,5585 green |PATO 320 1,46
sample4 0,1394 yellow |PATO 324 1,23
sample5 0,5313 yellow |PATO 324 1,23
sample6 0,8398 green PATO 320 1,31
sample7 0,8084 green PATO 320 1,62
sample10 0,1138 green |PATO 320 1,46
sample11 0,9038 green PATO 320 1,00
sample12 0,1341 yellow PATO 324 1,00
sample13 0,2490 yellow PATO 324 1,69
Fig. 4. The ISA-TAB processed data file for example data
Trait Name Trait Trait Term  Method Method Method Term Scale Name  Scale Source Scale Term
Source Accession Name Source REF Accession REF Accession
REF Number Number Number
len TO 576 Stem length | BO 12 uo 15
measuring
method
Colour PATO 14 Color PATO 14
assessed
visually by 2
specialists
Stem Diameter uo 16
diameter measured in
the middle

Fig. 5. The ISA-TARB trait definition file for example data
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Project deliverable: transPLANT tran@' B

Parameter Characteristics[Infra-  Factor Factor Estimate[len]  |Standard Error[len]
specific name] Value[Treatment] Value[Block]
Mean Amarena Control 0.3605 0.1875
Mean :Amarena ‘Drought 1.5759 0.1875
Mean Basza Control 0.4106 0.1875
Mean Basza Drought | | 0.9345 0.1875
Mean 'HOR 198 Control | 0.5525 0.1875
Mean HOR 198 Drought 0.9441 0.1875
Mean Nagradowicki Control 0.6379 0.1875
Mean 'Nagradowicki ‘Drought | 1.3359 | 0.1875
Mean ‘Sebastian Control | | 0.4760 0.1875
Mean Sebastian Drought 0.5609 0.2415
Mean | Control ‘ ‘ 0.4875 0.0906
Mean | Drought | _ 1.0703 0.0956
Mean Amarena 0.9682 0.1353
Mean Basza | ‘ 0.6725 0.1353
Mean 'HOR 198 A | A 0.7483 0.1353
Mean Nagradowicki 0.9869 0.1353
Mean Sebastian | ‘ 0.5185 0.1553
Mean 0.7789 0.0712
Variance | * 0.00733 0.0184
Error Variance ‘ ' ' 0.16849 0.0409

Fig. 6. The ISA-TAB sufficient data file for example data

Parameter Characteristics[Infra-  Factor Factor Estimate[len]  Standard Error[len]
specific name] Value[Treatment] Value[Block]

Mean Amarena Control |

Mean Amarena Drought

Mean ‘Basza Control

Mean Basza Drought

Mean HOR 198 Control

Mean 'HOR 198 Drought

Mean Nagradowicki Control

Mean Nagradowicki Drought

Mean ‘Sebastian Control

Mean ‘Sebastian Drought

Mean Control

Mean Drought 0.6131

Mean Amarena ‘ ‘ .

Mean Basza ' -0.2957

Mean HOR 198 -0.2199

Mean 'Nagradowicki » | 0.0187

Mean Sebastian | | -0.3738

Mean | | | | 0.6616

Variance % 0.0000 0.0153

Error Variance 0.196 0.0449

Fig. 7. The ISA-TAB sufficient data file with minimal dimension for no-interaction model for example data
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