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stat.stanford.edu/~tibs/ElemStatLearn/.
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Motivation



Motivation

• Identifying large amounts of associations efficiently is a 

problem that arises frequently in modern genomics data.

• Understand the genetics of important human diseases.  Data is 
typically in the form of case control data with ascertainment bias.

• Understand the genetics of other important traits, e.g. traits with 
medical or agricultural relevance.

• Identifying expression QTLs.

• Cancer genetics, for identifying problematic mutations.

• Understand interaction between genotypes and the 
environment.

• As genomics datasets become more common and sample 

sizes grow, the need for efficient tests increases.



Motivation

• Studying the genetics of natural variation

• Understanding the genetic architecture of 

traits of ecological and agricultural 

importance

• Identifying the genomic regions that control 

genetic variation

• Test association at many variants instead of 
some and hypothesis-free instead of 
hypothesis-driven.



Phenotype  ←→  Genomic marker
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A simple GWAS example

• Sodium concentration measured in A. thaliana leaves.

Bonferroni

Manhattan plots



Multiple testing correction

• In GWAS a large number of marker tests are conducted, which 

leads to a multiple testing problem.

• Using a 5% significance threshold, we would expect 5% of the 

markers that have true marker effects of 0 to be significant.

• Solutions include:

• Bonferroni correction: By assuming markers are independent we 
can obtain a conservative bound on the probability of rejecting 
the null hypothesis for one or more markers.

for a given significance threshold     . 

• Other common methods include adjusted Bonferroni correction 
depending on rank, and permutations. 



GWAS - a success story

http://www.genome.
gov/gwastudies/



Why plants (A. thaliana)?

• Replicates usually available either through       
clonal propagation or the existence of       
inbred lines

• Relationship with breeding
• A.thaliana: the model plant

• small size
• rapid life cycle
• small genome (~150 Mb, 5 Chr.)
• inbred (self-fertilization)
• transgenics (follow up)
• mutant collections (follow up)



Why plants (A. thaliana)?
Availability of lines

• Curated information about 7522 accessions (https://goo.gl/IwGah) 



Why plants (A. thaliana)?
Availability of genotypes

Genotyping data:

• 250k Affymetrix genotyping array (Horton et al., 2012)

• 250.000 probes → after filtering 214.051 SNPs for 1307 
accessions.

• Expected resolution is pretty good (average SNP density 1 per 
550 bp | LD decays on average within 10 kb. Kim et al., 2007)

Full-sequence data:

• Small sets:

• Long et al., 2013 (181 accessions)
• Cao et al., 2010 (80 accessions)
• Schmitz et al., 2013 (195 accessions)

• 1001genomes (http://the1001genomes.org):

• Joint effort of MPI, GMI, Salk and Monsanto
• 10 Million SNPs and 500k structural var. for 1135 accessions
• Imputation → 2029 accessions



Why plants (A. thaliana)?
Availability of phenotypes

• Atwell et al., 2010:
• 107 phenotypes on up to 197 accessions
• 4 categories: flowering (23), defence (23), ionomics (18), 

development (18)
• https://github.com/Gregor-Mendel-Institute/atpolydb

• Other sources on larger datasets:
• Baxter et al., 2010: sodium concentration on 342 

accessions.
• Li et al., 2010: flowering time for 473 accessions grown in 

4 controlled environments
• Unpublished data: flowering time, germination, leaf 

morphology, metabolite levels, gene expression

https://github.com/Gregor-Mendel-Institute/atpolydb
https://github.com/Gregor-Mendel-Institute/atpolydb


Linkage disequilibrium

• Neighboring markers will tend to be inherited together, 

causing linkage disequilibrium (LD) between the two markers

• Since LD causes correlations between markers, in a given 

population we expect a lot of redundancy in the genotypes.

Causative gene

Phenotype

Genotyped SNP

Indirect 
association

Causal association

Linkage disequilibrium

Unobserved causal SNP



Population Structure

• Isolation by distance (Platt et al, 2010)

• Accessions tend to cluster in sub-populations according to their 

geographic origin



Population Structure

• Confounding due to population structure may arise if it 

correlates with the trait in question.

• Any variant which is fixed for different alleles in each sub-

population will show an association.

Sub-population 1

Sub-population 2



Examples of Population 
Structure Confounding

• Humans:

• Genetic marker for skin color might also be associated with 
malaria resistance because the trait is correlated with the 
population structure.

• A. thaliana:
• Flowering time is 

correlated with 

latitude

• Disease resistance is 

NOT correlated with 

population structure

late flowering

early flowering



Population Structure is 
reflected in long range LD.

Linkage disequilibrium 
in A. thaliana, 214K 
SNPs and 1307 
accessions.



Implication for Association 
Studies
• Test statistic is inflated

• High false positive rate

causal SNP



Association mapping in 
structured populations

• Genomic control: Scale down the test-statistic so that its 

median becomes the expected median.  Heavily used, but 

does not solve the problem (Devlin & Roeder 1999, 

Biometrics)!

• Structured association (Pritchard et al. 2000, Am.J.Hum.Genet.)

• PCA approach: Accounting for structure using the first n 

principle components of the genotype matrix (Price et al., 

2006).  However when population structure is very complex, 

e.g. in A. thaliana, too many PCs are needed.

• Mixed Model approach: Model the genotype effect as a random 

term in a mixed model, by explicitly describing the covariance 

structure between the individuals (Yu et al. 2006, Nature 

Genet.; Kang et al. 2008, Genetics).



GWAS Methods

Linear Model, Non-parametric test, Linear Mixed Model, 
Advanced Linear Mixed Models & Caveats & Problems



Linear Model (LM)

A linear model generally refers to linear regression models in statistics.

• Y typically consists of the phenotype values, or 
case-control status for N individuals.

• X is the NxP genotype matrix, consisting of P 
genetic variants (e.g. SNPs).

• ϐ is a vector of P effects for the genetic variants.

• ϵ  is still just known as the noise or error term. 



Non-parametric tests (KW)

• Both the t-test and the F-test assume that the underlying 

distribution is Gaussian, i.e. for a single SNP, the conditional 

phenotype distribution is Gaussian. 

• This is obviously not true for most traits.

• Alternatively we can employ non-parametric tests. 

• For binary markers (SNPs coded as 0-1), we can use the 

Wilcoxon rank sum test, or a Fisher’s exact test.

• For more general markers (more that two alleles) we can 

employ a Kruskal-Wallis, Wilcoxon rank-sum test, or the 

Spearman rank correlation.



Linear Mixed Model (LMM)

• Linear model and Non-parametric tests don’t account for 

population structure

• Initially proposed in Association mapping by Yu et al. (2006)

• Y typically consists of the phenotype values, or case-control status 

for N individuals.

• X is the NxP genotype matrix, consisting of P genetic variants (e.g. 

SNPs).

• u is the random effect of the mixed model with var(u) = σ g K

• K is the N x N kinship matrix inferred from genotypes

• ϐ is a vector of P effects for the genetic variants.

• ϵ is a N x N matrix of residual effects with var(ε) = σ e I



Kinship

• The kinship measures the degree of relatedness, and is in 

general different from the covariance matrix.

• It is estimated using either pedigree (family relationships) data 

or (lately) using genotype data. 

• When estimating it from pedigree data, one normally assumes 
that the ancestral founders are “unrelated”.

• They are sensitive to confounding by cryptic relatedness.

• Alternatively the kinship can be estimated from genotype 

data.

• Genotype data may be incomplete.

• Weights or scaling of genotypes can impact the kinship.
• A. thaliana using an IBS matrix works pretty well (Zhao et al., 

2007, Atwell et al., 2010)



Linear Mixed Model (LMM)

• Original implementation: EMMA (Kang et al., 2008)

• Problem: O(PN³) → 1 GWAS in 1 day (500k individuals)

• Approximate methods O(PN²):

• GRAMMAR (Aulchenko et al., 2007) http://www.genabel.
org/packages/GenABEL

• P3D (Zhang et al., 2010) http://www.maizegenetics.net/#!tassel/c17q9

• EMMAX (Kang et al., 2010) http://genetics.cs.ucla.edu/emmax/

• Exact methods:

• FaST LMM (Lippert et al., 2011) http://mscompbio.codeplex.com/

• GEMMA (Zhou et al., 2012) http://www.xzlab.org/software.html

• This is too slow for large samples (>20000 individuals), i.e. exactly 
the sample sizes where one might expect to see most gains.

• BOLT-LMM (Loh et al., 2015), O(PN) https://data.broadinstitute.
org/alkesgroup/BOLT-LMM/?

http://www.genabel.org/packages/GenABEL
http://www.genabel.org/packages/GenABEL
http://www.genabel.org/packages/GenABEL
http://www.maizegenetics.net/#!tassel/c17q9
http://genetics.cs.ucla.edu/emmax/
http://mscompbio.codeplex.com/
http://www.xzlab.org/software.html


BOLT-LMM

Po-Ru Loh et al. (Nat Genet 2015) 



LMM reduces test statistic inflation



GWAS for a simulated phenotype

LMM reduces false positive rate



Advanced Mixed Models

The mixed-model performs pretty well, but GWAS power remain 

limited and need to be improved:

• Multi Locus Mixed Model (MLMM, Segura et al., 2012):

• Single SNP tests are wrong model for polygenic traits
• Increase in power compared to single locus models
• Detection of new associations in published datasets
• Identification of particular cases of (synthetic associations) 

and/or allelic heterogeneity
• Multi Trait Mixed Model (MTMM, Korte et al., 2012):

• Traits are often correlated due to pleiotropy (shared genetics) 
or linkage between causative polymorphisms.

• Combining correlated traits in a single model should thus 
increase detection power

• When multiple phenotypes consists in a single trait measure in 
multiple environments, plasticity can be studies through the 
assessment of GxE interaction



Caveats & Problems
Accounting for population structure does not alway work:



Caveats & Problems
Difficult to decide which peaks are significant (Solution: permutation)



Caveats & Problems
Peaks are complex and make it difficult to pinpoint causative site



Caveats & Problems
Condition under which GWAS will be positively misleading:

• Correlation between causal factors and unlinked non-causal  

markers

• More than one causal factor

• Epistasis 

Platt et al., 2010



Caveats & Problems
Different associations for different subsets (i.e. Flowering time at 10 °C):Different associations for different subsets (i.e. Flowering time at 10 °C

• Highly heritable, easy to measure, polygenic trait 

• 925 worldwide accessions

• Flowering time greatly varies in different populations



Caveats & Problems
Significance and effect 

size differ dramatically 

in different subsets

Reasons:

• False positives

• Effect depends on 

genetic background 

(Epistasis)

• Differences in allele 

frequency of the 

causal marker

• Artefact of LMM



Caveats & Problems



Hands-on tutorial

Introduction to GWA-Portal, Step-by-step guide and 
Resources



Introduction to GWA-Portal

• GWAPP (Seren et al., 2012) was a case study to see if we can 

provide real-time on-the-fly LMM GWAS as a web-application

• 250k genotype (Horton et al., 2012)
• 4 methods: LM, KW, EMMAX and MLMM
• Interactive Manhattan and LD plots



Pleiotropy analysis



Introduction to GWA-Portal
• Single resource for phenotypes, GWAS 

analysis, germplasm and genotypes.



Introduction to GWA-Portal
Features

• Genotype datasets:
• 250k dataset (1386)
• Swedish genomes (181)
• 1001 genomes (1135)
• Imputed data (2029)

• Permission system & sharing options for phenotypes 
and GWAS results

• Integrated search via fulltext search engine
• Interactive charts and visualizations
• Analysis of Pleiotropy:

• Candidate gene list enrichment
• Top-SNPs and Gene view
• Detailed SNP information



Step-by-step guide

1. Groups of 2 - 3 users

2. Download phenotype file

3. Each groups creates a study

4. Upload the phenotype and create a GWAS analysis

5. 5-10 minute coffee break (until GWAS analysis is 

finished)

6. Interactive discovery using Manhattan plots (filtering, 

zooming, etc)

7. Display detailed SNP information

8. View candidate gene list enrichment analysis

9. Meta-analysis of pleiotropy



Cellular phenotype

•



Step-by-step guide

2. Download phenotype file:

Group A: 

• Meristem zone length

• https://goo.gl/gKEIKe

Group B: 

• Mature cell length

• https://goo.gl/qiq0oX



Step-by-step guide

Site: http://gwas.gmi.oeaw.ac.at

Login:  gwas@workshop.org

Password: gwas



Summary
What did we learn?, Resources & Acknowledgements?



Summary

• GWAS is a powerful tool to understand the genetics of natural 

variation. 

• Methods are fast enough to do GWAS on big sample sizes in 

reasonable time

• Population structure confounding can cause issues

• Linear Mixed Model can help address this issue
• BUT GWAS is not without challenges to be aware of

• Epistatic interaction
• Allelic heterogeneity
• GWAS on sub-samples 
• …

• Web-based tools like GWA-Portal allow to mine the GWAS data, 

look at the information from different perspectives and uncover 

previously unknown pleiotropic effects.



Summary

THE END
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Resources

• GWAPP (Seren et al.): 

• URL: http://gwapp.gmi.oeaw.ac.at
• Code: http://github.com/timeu/GWAPP

• GWA-Portal:

• URL: http://gwas.gmi.oeaw.ac.at
• Code: https://github.com/timeu/GWA-Portal

• Phenotypes:

• Meijón et al., 2013 (Nature Genetics)
• http://www.nature.com/ng/journal/v46/n1/full/ng.2824.html

• PyGWAS:

• https://pypi.python.org/pypi/PyGWAS/0.1.4
• https://registry.hub.docker.com/u/timeu/pygwas/

http://gwapp.gmi.oeaw.ac.at
http://github.com/timeu/GWAPP
http://gwas.gmi.oeaw.ac.at
https://github.com/timeu/GWA-Portal
http://www.nature.com/ng/journal/v46/n1/full/ng.2824.html#auth-1
http://www.nature.com/ng/journal/v46/n1/full/ng.2824.html#auth-1
http://www.nature.com/ng/journal/v46/n1/full/ng.2824.html
http://www.nature.com/ng/journal/v46/n1/full/ng.2824.html
https://pypi.python.org/pypi/PyGWAS/0.1.4
https://pypi.python.org/pypi/PyGWAS/0.1.4
https://registry.hub.docker.com/u/timeu/pygwas/
https://registry.hub.docker.com/u/timeu/pygwas/
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