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Suggested literature

* Hastie, Tibshirani, and Friedman. (2009) The Elements of
Statistical Learning: Data Mining, Inference, and Prediction. A

very good book. A pdf can be downloaded here: http://www-
stat.stanford.edu/~tibs/ElemStatLearn/.

* Lynch and Walsh. (1998) Genetics and Analysis of
Quantitative Traits. This book is an outstanding classical
reference for quantitative geneticists.

* Nature Genetics. (2008-2013) Genome-wide association
studies. Series about best practices for doing GWAS in
humans. http://www.nature.com/nrg/series/gwas/index.html
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Motivation

* ldentifying large amounts of associations efficiently is a

problem that arises frequently in modern genomics data.
Understand the genetics of important human diseases. Data is
typically in the form of case control data with ascertainment bias.

Understand the genetics of other important traits, e.g. traits with
medical or agricultural relevance.

Identifying expression QTLs.
Cancer genetics, for identifying problematic mutations.

Understand interaction between genotypes and the
environment.

* As genomics datasets become more common and sample
sizes grow, the need for efficient tests increases.




Motivation

Studying the genetics of natural variation

Understanding the genetic architecture of
traits of ecological and agricultural
Importance

ldentifying the genomic regions that control
genetic variation

Test association at many variants instead of
some and hypothesis-free instead of
hypothesis-driven.
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Phenotype = Genotype + Environment + GxE
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A simple GWAS example

* Sodium concentration measured in A. thaliana leaves.

Manhattan plots
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Multiple testing correction

* In GWAS a large number of marker tests are conducted, which
leads to a multiple testing problem.

* Using a 5% significance threshold, we would expect 5% of the
markers that have true marker effects of O to be significant.

* Solutions include:

Bonferroni correction: By assuming markers are independent we
can obtain a conservative bound on the probability of rejecting
the null hypothesis for one or more markers.

1_P<T1§t77Tm§t‘HO)SQ

(Y
for a given significance threshold .

Other common methods include adjusted Bonferroni correction
depending on rank, and permutations.




GWAS - a success story
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Why plants (A. thaliana)?

» Replicates usually available either through
clonal propagation or the existence of
inbred lines

» Relationship with breeding

» A.thaliana: the model plant

small size

rapid life cycle

small genome (~150 Mb, 5 Chr.)
inbred (self-fertilization)
transgenics (follow up)

mutant collections (follow up)
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Why plants (A. thaliana)?

Availability of lines
Curated information about 7522 accessions (https://goo.gl/lwGah)
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Why plants (A. thaliana)?

Availability of genotypes

Genotyping data:

* 250k Affymetrix genotyping array (Horton et al., 2012)
250.000 probes — after filtering 214.051 SNPs for 1307
accessions.
Expected resolution is pretty good (average SNP density 1 per

550 bp | LD decays on average within 10 kb. Kim et al., 2007)
Full-sequence data:

*  Small sets:

Long et al., 2013 (181 accessions)
Cao etal., 2010 (80 accessions)
Schmitz et al., 2013 (195 accessions)

* 1001genomes (http://the1001genomes.org):
Joint effort of MPI, GMI, Salk and Monsanto

10 Million SNPs and 500k structural var. for 1135 accessions
Imputation — 2029 accessions




Why plants (A. thaliana)?

Availability of phenotypes

* Atwell et al., 2010:

107 phenotypes on up to 197 accessions

4 categories: flowering (23), defence (23), ionomics (18),
development (18)
https://github.com/Gregor-Mendel-Institute/atpolydb

* Other sources on larger datasets:

Baxter et al., 2010: sodium concentration on 342
accessions.

Li et al., 2010: flowering time for 473 accessions grown in
4 controlled environments

Unpublished data: flowering time, germination, leaf
morphology, metabolite levels, gene expression



https://github.com/Gregor-Mendel-Institute/atpolydb
https://github.com/Gregor-Mendel-Institute/atpolydb

Linkage disequilibrium

* Neighboring markers will tend to be inherited together,
causing linkage disequilibrium (LD) between the two markers

Indirect Hliislieiyjp ]

association

Causal association

T

Genotyped SNP

Causative gene
A
Linkage disequilibrium

Unobserved causal SNP

* Since LD causes correlations between markers, in a given

population we expect a lot of redundancy in the genotypes.



Population Structure

Isolation by distance (Platt et al, 2010)

Accessions tend to cluster in sub-populations according to their

geographic origin
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Population Structure

* Confounding due to population structure may arise if it
correlates with the trait in question.

Sub-population 1 AA‘A‘A
o OAAAAA

000000
Sub-population 2
AOGOOOO

* Any variant which is fixed for different alleles in each sub-
population will show an association.




Examples of Population
Structure Confounding

* Humans:

Genetic marker for skin color might also be associated with
malaria resistance because the trait is correlated with the

population structure.

. thaliana:

Flowering time is
correlated with
latitude

Disease resistance is
NOT correlated with
population structure
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Population Structure is
r_e_flected in long range LLD.
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Implication for Association
Studies

*  Test statistic is inflated

* High false positive rate
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Association mapping in
structured populations

* Genomic control: Scale down the test-statistic so that its
median becomes the expected median. Heavily used, but
does not solve the problem (Devlin & Roeder 1999,
Biometrics)!

* Structured association (Pritchard et al. 2000, Am.J.Hum.Genet.)

* PCA approach: Accounting for structure using the first n
principle components of the genotype matrix (Price et al.,
2006). However when population structure is very complex,
e.g. in A. thaliana, too many PCs are needed.

* Mixed Model approach: Model the genotype effect as a random
term in a mixed model, by explicitly describing the covariance
structure between the individuals (Yu et al. 2006, Nature
Genet.; Kang et al. 2008, Genetics).




Linear Model, Non-parametric test, Linear Mixed Model,
Advanced Linear Mixed Models & Caveats & Problems

GWAS Methods




Linear Model (LM)

A linear model generally refers to linear regression models in statistics.

P
ijZﬁjl‘z'j+€é Y =X'B+e
j=1

* Y typically consists of the phenotype values, or
case-control status for N individuals.

e Xis the NxP genotype matrix, consisting of P
genetic variants (e.g. SNPs).

* 0is a vector of P effects for the genetic variants.
e ¢ is still just known as the noise or error term.




Non-parametric tests (KW)

* Both the t-test and the F-test assume that the underlying
distribution is Gaussian, i.e. for a single SNP, the conditional
phenotype distribution is Gaussian.

This is obviously not true for most traits.
* Alternatively we can employ non-parametric tests.

* For binary markers (SNPs coded as 0-1), we can use the
Wilcoxon rank sum test, or a Fisher’s exact test.

* For more general markers (more that two alleles) we can
employ a Kruskal-Wallis, Wilcoxon rank-sum test, or the
Spearman rank correlation.




Linear Mixed Model (LMM)

Linear model and Non-parametric tests don’t account for
population structure

Y=XB+u+e u~N(0,0,K) €~ N(0,0.I)

Initially proposed in Association mapping by Yu et al. (2006)
Y typically consists of the phenotype values, or case-control status
for N individuals.

X is the NxP genotype matrix, consisting of P genetic variants (e.g.
SNPs).

u is the random effect of the mixed model with var(u) = o g K

K is the N x N kinship matrix inferred from genotypes
0 is a vector of P effects for the genetic variants.

€ is a N x N matrix of residual effects with var(e) =c e |




Kinship

* The kinship measures the degree of relatedness, and is in
general different from the covariance matrix.

* It is estimated using either pedigree (family relationships) data
or (lately) using genotype data.

When estimating it from pedigree data, one normally assumes
that the ancestral founders are “unrelated”.

They are sensitive to confounding by cryptic relatedness.
 Alternatively the kinship can be estimated from genotype
data.

Genotype data may be incomplete.

Weights or scaling of genotypes can impact the kinship.
 A. thaliana using an IBS matrix works pretty well (Zhao et al.,

2007, Atwell et al., 2010)




Linear Mixed Model (LMM)

* Original implementation: EMMA (Kang et al., 2008)

Problem: O(PN3) — 1 GWAS in 1 day (500k individuals)
* Approximate methods O(PN?):

GRAMMAR (Aulchenko et al., 2007) http://www.genabel.
org/packages/GenABEL

P3D (Zhang et al., 2010) http://www.maizegenetics.net/#!tassel/c17q9
EMMAX (Kang et al., 2010) http://genetics.cs.ucla.edu/emmax/

* Exact methods:

FaST LMM (Lippert et al., 2011) http://mscompbio.codeplex.com/
GEMMA (Zhou et al., 2012) http://www.xzlab.org/software.html

* This is too slow for large samples (>20000 individuals), i.e. exactly
the sample sizes where one might expect to see most gains.

BOLT-LMM (Loh et al., 2015), O(PN) https://data.broadinstitute.
org/alkesgroup/BOLT-LMM/?
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LMM reduces test statistic inflation
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LMM reduces false positive rate

GWAS for a simulated phenotype

Linear % =
Regression 3 =« -
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Advanced Mixed Models

The mixed-model performs pretty well, but GWAS power remain
limited and need to be improved:

Multi Locus Mixed Model (MLMM, Segura et al., 2012):

Single SNP tests are wrong model for polygenic traits
Increase in power compared to single locus models
Detection of new associations in published datasets
Identification of particular cases of (synthetic associations)
and/or allelic heterogeneity

Multi Trait Mixed Model (MTMM, Korte et al., 2012):

Traits are often correlated due to pleiotropy (shared genetics)
or linkage between causative polymorphisms.

Combining correlated traits in a single model should thus
increase detection power

When multiple phenotypes consists in a single trait measure in

multiple environments, plasticity can be studies through the
assessment of GxE interaction




Caveats & Problems

Accounting for population structure does not alway work:

o 10 o0 10 200 10 0 10 20

20
Sometimes it Wilcoxon rank sum test

0 10




Caveats & Problems

Difficult to decide which peaks are significant (Solution: permutation)

A: GWA analysis of hypersensitive response to bacterial elicitor

-log(p)
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B: GWA analysis of germination on MS medium
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Caveats & Problems

Peaks are complex and make it difficult to pinpoint causative site
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Caveats & Problems

Condition under which GWAS will be positively misleading:

markers

Correlation between causal factors and unlinked non-causal

* More than one causal factor

° Epistasis
the two causal loci
Platt et al., 2010
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Caveats & Problems

Different associations for different subsets (i.e. Flowering time at 10 °C)):
* Highly heritable, easy to measure, polygenic trait
* 925 worldwide accessions
*  Flowering time greatly varies in different populations
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234567889
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Caveats & Problems
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Caveats & Problems

Korte and Farlow Plant Methods 2013, 9:29
http//www plantmethods.com/content/9/1/29
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The advantages and limitations of trait analysis

with GWAS: a review
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[ Abstract

Highly accessed

Genome-wide association studies in plants: the missing
heritability is in the field

Benjamin Brachi, Geoffrey P Morris and Justin O Borevitz'
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Abstract
Genome-wide association studies (GWAS) have been even more successful in plants than in humans.

Mapping approaches can be extended to dissect adaptive genetic variation from structured
background variation in an ecological context.

COMMENT

The nature of confounding in
genome-wide association studies

address this issue.

Thanks to dramatically decreasing genotyping and
sequencing costs, genome-wide association studies
(GWASs) are becoming the default method for studying
the genetics of natural variation. The increasing num-
ber and diversity of GWASs will require appropriate
statistical analysis methods. The most basic problem is
assessing the significance of an association in the light of
confounding effects that may cause spurious associations.

The aspect of this problem that has received the
most attention is the danger of false positives in struc-
tured populations. If the study population is a mixture
of populations that differ with respect to allele frequen-
cies as well as the trait of interest, spurious correlations

Bjarni J. Vilhjalmsson'? and Magnus Nordborg™*

The authors argue that population structure per se is not a problem in genome-wide
association studies — the true sources are the environment and the genetic background,
and the latter is greatly underappreciated. They conclude that mixed models effectively

in ‘unrelated’ individuals. Variation in relatedness is a
basic property of natural populations, as is correlation
between causative loci. This issue is familiar to quantita-
tive geneticists® but has not been widely appreciated in
other fields. It is important for GWASs and will become
crucial as sample sizes increase.

To demonstrate this, let us return to the chopstick
example but fast-forward to the era of millions of SNPs.
Genetic differentiation between East Asians and other

pulations means that vast numbers of markers in addi-
tion to HLA-A I would be associated with chopstick skill.
These markers would also be correlated with HLA-A1,
with each other and with any trait (genetic or not) that




Introduction to GWA-Portal, Step-by-step guide and
Resources

Hands-on tutorial




Introduction to GWA-Portal

GWAPP (Seren et al., 2012) was a case study to see if we can
provide real-time on-the-fly LMM GWAS as a web-application

250k genotype (Horton et al., 2012)
4 methods: LM, KW, EMMAX and MLMM

Interactive Manhattan and LD plots
(GWAPP

o
! HOME ACCESSIONS UPLOAD PHENOTYPES ANALYSIS HEEP

€
«Welcome to GWAPP

i
(Dataset key: 9746373¢-1b0c-11€5-836¢-00505699004 | Change |

‘GWAPP ables reseachers working with Arabidopsis thaliana to do Genome Wide tran
¢Ass: n Mapping (GWAS) on their phenotypes.

“ GWAPP is part of the TransPLANT project (grant agreemem number 283496)
¢ which is funded by the the European C

*
*
*

f Check out the Quick Start below to see how to use GWAPP. For a more detailed
(information refer to the Help page.

«Quick Start

¢ (click on figures to view steps in fullscreen)
: Step 1 Upload Phenotypes Step 2 -Verify Phenotypes Step 3 - Create Dataset (Optional)

%MI!B: GWAS-Web-App GMIz
R

%Mlﬁ GWAS-Web-App

Step 6 - View Results
 GMIE | awAs-Web-App

= P8 s Search




Pleiotropy analysis

Pleiotropy

Multiple
traits

Single
gene




Introduction to GWA-Portal

* Single resource for phenotypes, GWAS
analysis, germplasm and genotypes.
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Introduction to GWA-Portal

Features

Genotype datasets:

250k dataset (1386)

Swedish genomes (181)

1001 genomes (1135)

Imputed data (2029)
Permission system & sharing options for phenotypes
and GWAS results
Integrated search via fulltext search engine
Interactive charts and visualizations
Analysis of Pleiotropy:

Candidate gene list enrichment
Top-SNPs and Gene view
Detailed SNP information




Step-by-step guide

Groups of 2 - 3 users

Download phenotype file

Each groups creates a study

Upload the phenotype and create a GWAS analysis
5-10 minute coffee break (until GWAS analysis is
finished)

Interactive discovery using Manhattan plots (filtering,
zooming, etc)

Display detailed SNP information

View candidate gene list enrichment analysis
Meta-analysis of pleiotropy




Cellular phenotype

Mature cell length
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Step-by-step guide

2. Download phenotype file:
Group A:

Meristem zone length

https://goo.gl/gKEIKe
Group B:

Mature cell length

https://goo.gl/giq0oX




Step-by-step guide

Site: http://gwas.gmi.oeaw.ac.at
Login: gwas@workshop.org

Password: gwas




What did we learn?, Resources & Acknowledgements?

Summary




Summary

* GWAS is a powerful tool to understand the genetics of natural
variation.

* Methods are fast enough to do GWAS on big sample sizes in
reasonable time
* Population structure confounding can cause issues

Linear Mixed Model can help address this issue
* BUT GWAS is not without challenges to be aware of

Epistatic interaction
Allelic heterogeneity
GWAS on sub-samples

* Web-based tools like GWA-Portal allow to mine the GWAS data,
look at the information from different perspectives and uncover
previously unknown pleiotropic effects.
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Resources

* GWAPP (Seren et al.):

URL: http://gwapp.gmi.oeaw.ac.at
Code: http://github.com/timeu/GWAPP
* GWA-Portal:

URL: http://gwas.gmi.oeaw.ac.at
Code: https://github.com/timeu/GWA-Portal
*  Phenotypes:

Meijon et al., 2013 (Nature Genetics)
http://www.nature.com/ng/journal/v46/n1/full/ng.2824.html

* PyGWAS:
https://pypi.python.ora/pypi/PyGWAS/0.1.4
https://reqistry.hub.docker.com/u/timeu/pyagwas/



http://gwapp.gmi.oeaw.ac.at
http://github.com/timeu/GWAPP
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https://pypi.python.org/pypi/PyGWAS/0.1.4
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